* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Machine Learning™ - Neural Networks from Scratch [Python]  (Lida 129 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126028
  • Karma: +0/-0
Machine Learning™ - Neural Networks from Scratch [Python]
« em: 21 de Outubro de 2020, 10:33 »

Machine Learning™ - Neural Networks from Scratch [Python]
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.06 GB
Genre: eLearning Video | Duration: 39 lectures (3 hour, 30 mins) | Language: English
 Learn Hopfield networks and neural networks (and back-propagation) theory and implementation in Python

What you'll learn

    Hopfield neural networks theory
    Hopfield neural network implementation in Python
    Neural neural networks theory
    Neural networks implementation
    Loss functions
    Gradient descent and back-propagation algorithms

Requirements

    Very basic Python

Description

This course is about artificial neural networks. Artificial intelligence and machine learning are getting more and more popular nowadays. In the beginning, other techniques such as Support Vector Machines outperformed neural networks, but in the 21st century neural networks again gain popularity. In spite of the slow training procedure, neural networks can be very powerful. Applications ranges from regression problems to optical character recognition and face detection.

Section 1:

    what are Hopfield neural networks

    modeling the human brain

    the big picture behind Hopfield neural networks

Section 2:

    Hopfield neural networks implementation

    auto-associative memory with Hopfield neural networks

Section 3:

    what are feed-forward neural networks

    modeling the human brain

    the big picture behind  neural networks

Section 4:

    feed-forward neural networks implementation

    gradient descent with back-propagation

In the first part of the course you will learn about the theoretical background of neural networks, later you will learn how to implement them in Python from scratch.

If you are keen on learning machine learning methods, let's get started!

Who this course is for:

    Beginner Python developers curious about data science

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction