* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    Hoje às 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46
  • Cocanate: boas minha gente
    24 de Janeiro de 2026, 01:26
  • joca34: BOM DIA AL TEM ESTE CD Star Music - A Minha prima Palmira
    23 de Janeiro de 2026, 15:23
  • joca34: OLA
    23 de Janeiro de 2026, 15:23
  • FELISCUNHA: Bom dia pessoal  4tj97u<z
    23 de Janeiro de 2026, 10:59

Autor Tópico: Causal AI, Video Edition  (Lida 160 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Causal AI, Video Edition
« em: 20 de Maio de 2025, 11:06 »


Published: 2/2025
Duration: 15h 40m | Video: .MP4, 1920x1080 30 fps | Audio: AAC, 44.1kHz, 2ch | Size: 2.29 GB
Genre: eLearning | Language: English


In Video Editions the narrator reads the book while the content, figures, code listings, diagrams, and text appear on the screen. Like an audiobook that you can also watch as a video.
Build AI models that can reliably deliver causal inference.
How do you know what might have happened, had you done things differently? Causal AI gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions. Causal AI is a practical introduction to building AI models that can reason about causality.
In Causal AI you will learn how to
Build causal reinforcement learning algorithms
Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro
Compare and contrast statistical and econometric methods for causal inference
Set up algorithms for attribution, credit assignment, and explanation
Convert domain expertise into explainable causal models
Author Robert Osazuwa Ness, a leading researcher in causal AI at Microsoft Research, brings his unique expertise to this cutting-edge guide. His clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.
About the Technology
Traditional ML models can't answer causal questions like, "Why did that happen?" or, "What factors should I change to get a particular outcome?" This book blends advanced statistical methods, computational techniques, and new algorithms to create machine learning systems that automate the process of causal inference.
About the Book
Causal AI introduces the tools, techniques, and algorithms of causal reasoning for machine learning. This unique book masterfully blends Bayesian and probabilistic approaches to causal inference with practical hands-on examples in Python. Along the way, you'll learn to integrate causal assumptions into deep learning architectures, including reinforcement learning and large language models. You'll also use PyTorch, Pyro, and other ML libraries to scale up causal inference.
What's Inside
End-to-end causal inference with DoWhy
Deep Bayesian causal generative AI models
A code-first tour of the do-calculus and Pearl's causal hierarchy
Code for fine-tuning causal large language models
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/1611d85121ae3094d204bbbff22cba2f/iwcru.Causal.AI.Video.Edition.part1.rar.html
https://rapidgator.net/file/e7b315aa1f691f7024595b7bb4db39de/iwcru.Causal.AI.Video.Edition.part2.rar.html
https://rapidgator.net/file/c667691db0c07946f152d616f63d2da7/iwcru.Causal.AI.Video.Edition.part3.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/09E213D2A96B4E0/iwcru.Causal.AI.Video.Edition.part1.rar
https://nitroflare.com/view/5AAF8FB16376A2C/iwcru.Causal.AI.Video.Edition.part2.rar
https://nitroflare.com/view/C602ADB4843E157/iwcru.Causal.AI.Video.Edition.part3.rar