* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    Hoje às 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39

Autor Tópico: Mastering Machine Learning: From Basics To Breakthroughs  (Lida 9 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117138
  • Karma: +0/-0
Mastering Machine Learning: From Basics To Breakthroughs
« em: 30 de Setembro de 2024, 12:11 »
Mastering Machine Learning: From Basics To Breakthroughs



Published 9/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 918.11 MB | Duration: 3h 38m

Machine Learning, Supervised Learning, Unsupervised Learning, Regression, Classification, Clustering, Markov Models


What you'll learn
Explore the fundamental mathematical concepts of machine learning algorithms
Apply linear machine learning models to perform regression and classification
Utilize mixture models to group similar data items
Develop machine learning models for time-series data prediction
Design ensemble learning models using various machine learning algorithms
Requirements
Foundations of Mathematics and Algorithms
Description
This Machine Learning course offers a comprehensive introduction to the core concepts, algorithms, and techniques that form the foundation of modern machine learning. Designed to focus on theory rather than hands-on coding, the course covers essential topics such as supervised and unsupervised learning, regression, classification, clustering, and dimensionality reduction. Learners will explore how these algorithms work and gain a deep understanding of their applications across various domains.The course emphasizes theoretical knowledge, providing a solid grounding in critical concepts such as model evaluation, bias-variance trade-offs, overfitting, underfitting, and regularization. Additionally, it covers essential mathematical foundations like linear algebra, probability, statistics, and optimization techniques, ensuring learners are equipped to grasp the inner workings of machine learning models.Ideal for students, professionals, and enthusiasts with a basic understanding of mathematics and programming, this course is tailored for those looking to develop a strong conceptual understanding of machine learning without engaging in hands-on implementation. It serves as an excellent foundation for future learning and practical applications, enabling learners to assess model performance, interpret results, and understand the theoretical basis of machine learning solutions.By the end of the course, participants will be well-prepared to dive deeper into machine learning or apply their knowledge in data-driven fields, without requiring programming or software usage.
Overview
Section 1: Introduction
Lecture 1 Introduction to Machine Learning
Lecture 2 Types of Machine Learning
Lecture 3 Polynomial Curve Fitting
Lecture 4 Probability
Lecture 5 Total Probability, Bayes Rule and Conditional Independence
Lecture 6 Random Variables and Probability Distribution
Lecture 7 Expectation, Variance, Covariance and Quantiles
Section 2: Linear Models for Regression
Lecture 8 Maximum Likelihood Estimation
Lecture 9 Least Squares Method
Lecture 10 Robust Regression
Lecture 11 Ridge Regression
Lecture 12 Bayesian Linear Regression
Lecture 13 Linear models for classification::Discriminant Functions
Lecture 14 Probabilistic Discriminative and Generative Models
Lecture 15 Logistic Regression
Lecture 16 Bayesian Logistic Regression
Lecture 17 Kernel Functions
Lecture 18 Kernel Trick
Lecture 19 Support Vector Machine
Section 3: Mixture Models and EM
Lecture 20 K-means clustering
Lecture 21 Mixtures of Gaussians
Lecture 22 EM for Gaussian Mixture Models
Lecture 23 PCA, Choosing the number of latent dimensions
Lecture 24 Hierarchial clustering
Students, data scientists and engineers seeking to solve data-driven problems through predictive modeling

Screenshots


rapidgator.net:
Citar
https://rapidgator.net/file/c30576e301cabb184b7f8903dcaa549e/ucjdz.Mastering.Machine.Learning.From.Basics.To.Breakthroughs.rar.html

ddownload.com:
Citar
https://ddownload.com/meypo6n7i0wg/ucjdz.Mastering.Machine.Learning.From.Basics.To.Breakthroughs.rar