* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39

Autor Tópico: Continual Learning  (Lida 20 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117138
  • Karma: +0/-0
Continual Learning
« em: 25 de Setembro de 2024, 16:10 »
Continual Learning



Published 9/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 3h 30m | Size: 1.23 GB
Learn Continual Learning Techniques from Scratch Using PyTorch

What you'll learn
Understand Deep Learning and Neural Networks: Start with core concepts, laying the foundation for advanced deep learning techniques.
Implement Neural Networks Without Libraries: Build neural networks from scratch, deepening your understanding of their core mechanics.
Build Neural Networks with PyTorch: Master the construction of neural networks using PyTorch, a leading deep learning framework.
Learn Continual Learning Techniques: Explore UER, SER, LwF, and EWC, and understand their application in adaptive AI systems.
Implement Continual Learning in PyTorch: Apply continual learning algorithms from scratch using PyTorch, preparing for real-world AI challenges.
Leverage deep learning in resource-constrained environments.
Requirements
Python Programming Language
Description
Unlock the potential of continual learning-a cutting-edge approach that allows machine learning models to adapt and learn from new data over time without forgetting previous knowledge. In this comprehensive course, you will gain both a strong theoretical foundation and hands-on experience in implementing continual learning techniques using PyTorch, one of the most widely used deep learning frameworks.This course begins by introducing the core concepts of deep learning and neural networks, ensuring a solid understanding of how models learn and evolve. From there, you will dive into key continual learning strategies such as Experience Replay (ER), Knowledge Distillation (KD), and Elastic Weight Consolidation (EWC). Each technique will be explored in detail, along with practical coding sessions where you'll build these methods from scratch using PyTorch.By the end of the course, you will:Master the fundamentals of deep learning and explore its application in continual learning.Implement continual learning techniques from scratch, including experience replay, Elastic Weight Consolidation (EWC), and knowledge distillation.Understand regularization and normalization methods to prevent overfitting and manage shifting data patterns over time.Build and train custom neural networks that can incrementally learn new tasks without forgetting previous ones.Apply continual learning algorithms to both regression and classification problems, preparing you for real-world applications.Leverage deep learning in resource-constrained environments.This course is designed for machine learning enthusiasts, developers, and researchers who want to take their deep learning skills to the next level and become proficient in continual learning. Whether you're familiar with PyTorch or new to it, this course will guide you through every step, making it accessible and rewarding for learners at various levels.
Who this course is for
Continual Learning Enthusiasts

Homepage:
Código: [Seleccione]
https://www.udemy.com/course/continual-learning/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/32079a47d503291a187ba0e5e391ddaa/zqgkx.Continual.Learning.part1.rar.html
https://rapidgator.net/file/fe13b66124ee52a7b08080f1f847a82e/zqgkx.Continual.Learning.part2.rar.html

ddownload.com:
Citar
https://ddownload.com/r3uvdtg3ftye/zqgkx.Continual.Learning.part1.rar
https://ddownload.com/xd4zkk1qurgb/zqgkx.Continual.Learning.part2.rar