* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    Hoje às 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: LLMs with LangChain - Beginner friendly  (Lida 35 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117271
  • Karma: +0/-0
LLMs with LangChain - Beginner friendly
« em: 06 de Junho de 2024, 07:42 »
LLMs with LangChain - Beginner friendly



Published 6/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 13m | Size: 522 MB
Understand Prompts, Chains and Agents. Build your first LLM App.


What you'll learn
Build an LLM based App from scratch using Streamlit.
Learn how Agents work. Understand the 3 components of Agents and code an Agent in LangChain
Learn how Chains work. Understand and build Simple and Sequential Chains.
Learn what are Prompts and how to use its structure
Understand how LangChain works. What are the components that make this library so effective
Requirements
There is no pre-requisite. I assume no knowledge of Langchain or Large Language Models
Description
This beginner-friendly course will help you start using LangChain to develop LLM applications with NO prior experience! We will understand the concepts by coding up examples. I see LangChain becoming what Pandas is to Data Science. It will be the core library that Data Scientists and Machine Learning professionals will use to build applications using Large Language Models. The goal of this course is to provide an understanding of how to navigate LangChain. There is no expectation of understanding of Natural Language Processing or Large Language Models. We will leverage the power of LangChain to build our use cases. Step-by-Step we will build up the key components of LangChain. Prompts, Chains, and then Agents.  We will build our understanding with easy-to-follow code. Topics covered are 1. Prompts - We will see what is a Prompt and how can we build Prompt templates to automate prompt inputs2. Chains - This is the Chain part of LangChain. We will see how Prompts roll up to Chains and explore Simple and Sequential Chains3. Agents - The most important and powerful feature of LangChain. We will see the 3 components that make up Agents- Tools, LLMs, and Agent type. We will explore Tools - Wikipedia, SerpAPI, LLMmath - to see how to best extract the power of Agents. 4. Build an LLM App. Use your knowledge to solve a real-world problem.
Who this course is for
Beginner A.I. enthusiasts who want to understand how Large Language Models can be used by using Langchain
Serve LLM based app using Streamlit

Homepage:
Código: [Seleccione]
https://www.udemy.com/course/llms-with-langchain-beginner-friendly/
Screenshots


rapidgator.net:
Citar
https://rapidgator.net/file/368acf0e60d5b87ab7b6af0574435ab7/ttuhw.LLMs.with.LangChain..Beginner.friendly.rar.html