* Cantinho Satkeys

Refresh History
  • j.s.: [link]
    Hoje às 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    Hoje às 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    Hoje às 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33

Autor Tópico: Project - Rooftop Solar Panel Detection Using Deep Learning  (Lida 57 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Project - Rooftop Solar Panel Detection Using Deep Learning
« em: 25 de Outubro de 2023, 06:54 »

Project - Rooftop Solar Panel Detection Using Deep Learning
Published 10/2023
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 830.88 MB | Duration: 1h 15m

Harness the Power of Deep Learning to Identify and Analyze Solar Installations from Aerial Imagery

What you'll learn
Complete end-to-end resume worthy project
Learn about Aerial Imagery and Related Data
Data Analysis and Preprocessing of Aerial Image data
Image Machine Learning Algorithms such as CNN
Requirements
Python Programming Basic Knowledge is Required
Description
Welcome to "Project - Rooftop Solar Panel Detection using Deep Learning"!In today's era of renewable energy, solar panels are sprouting on rooftops worldwide. Recognizing them efficiently can empower industries, city planners, and researchers alike. In this hands-on course, we dive deep into the world of artificial intelligence to develop a cutting-edge model capable of detecting solar panels from aerial images.What you'll learn:Fundamentals of Deep Learning: Kickstart your journey with a foundational understanding of neural networks, their architectures, and the magic behind their capabilities.Data Preparation: Learn how to source, cleanse, and prepare aerial imagery datasets suitable for training deep learning models.Model Building: Delve into the practicalities of building, training, and fine-tuning Convolutional Neural Networks (CNNs) for precise detection tasks.Evaluation and Optimization: Master techniques to evaluate your model's performance and optimize it for better accuracy.Real-World Application: By the end of this course, you will have a deployable model to identify rooftop solar installations from a bird's-eye view.Whether you're a student, a professional, or an enthusiast in the renewable energy or AI sector, this course is designed to equip you with the skills to contribute to a greener and more technologically advanced future. No previous deep learning experience required, though a basic understanding of Python programming will be helpful.Harness the synergy of AI and renewable energy and propel your skills to the forefront of innovation. Enroll now and embark on a journey of impactful learning!
Overview
Section 1: Introduction to Project and Data Processing
Lecture 1 Workflow of the Project
Lecture 2 Project Content
Lecture 3 Introduction to Project Statement
Lecture 4 Gist of the Dataset
Lecture 5 Importing the Libraries and the Dataset
Lecture 6 Function to prepare data for training and validation
Lecture 7 Analysing and Preprocessing the data
Section 2: Introduction to Machine Learning
Lecture 8 Quick Explanation on CNN
Lecture 9 Function to build Convolutional Neural Network (CNN)
Lecture 10 Stratified K-Fold Cross Validation to check the model performance
Lecture 11 Building, Training and Assessing the CNN Model
Section 3: Evaluation Metrics and Conclusion
Lecture 12 Evaluation Metrics for Classification (TP, FP, TN, FN)
Lecture 13 Visualising these Evaluation Metrics (TP, FP, TN, FN)
Lecture 14 Understanding and Implementing ROC curve and AUC
Lecture 15 Confusion Matrix to evaluate the model's performance
Lecture 16 Conclusion of the Project
Whoever interested in Satellite and Aerial image and data science

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/9b55902913d3c040ac3e35bde45fdbd7/imnrh.Project..Rooftop.Solar.Panel.Detection.Using.Deep.Learning.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/4ec917ac33289C4f/imnrh.Project..Rooftop.Solar.Panel.Detection.Using.Deep.Learning.rar

nitroflare.com:
Citar
https://nitroflare.com/view/D611462CF85C2C9/imnrh.Project..Rooftop.Solar.Panel.Detection.Using.Deep.Learning.rar