* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45

Autor Tópico: Data Engineering With Google Datafusion And Big Query (Cdap)  (Lida 82 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Data Engineering With Google Datafusion And Big Query (Cdap)
Published 5/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.03 GB | Duration: 3h 7m

Your first steps in Data Engineering with Google Datafusion, a low-code tool with an open-source version (CDAP)

What you'll learn
Understand a bit more Google Cloud Resources
Use Google Datafusion as ETL tool
Data Engineering Low Code
ETL
Create Data Pipelines and DAGs
Read and Write data on Google Big Query
Read and Write data on Google Cloud Storage
Data Transformations with low code and queries
Requirements
GCP account
Previous exposure to SQL
Description
This is an INTRODUCTORY course to Google Cloud's low-code ingestion tool, Datafusion. Google Data Fusion is a fully managed data integration platform that allows data engineers to efficiently create, deploy, and manage data pipelines.One of the main reasons to use Google Data Fusion is its ease of use. With an intuitive and visual interface, data engineers can create complex data pipelines without the need for extensive coding. The drag-and-drop interface simplifies the process of data transformation and cleansing, allowing professionals to focus on business logic rather than worrying about detailed coding.Another significant benefit of Google Data Fusion is its scalability. The platform runs on Google Cloud, which means it can handle large volumes of data and high-performance parallel processing. Data engineers can vertically or horizontally expand their processing capabilities according to project needs, ensuring they can handle any data demand at scale.Furthermore, Google Data Fusion seamlessly integrates with other services and products in the Google Cloud ecosystem. Data engineers can easily connect and integrate data pipelines with services such as BigQuery, Cloud Storage, Pub/Sub, and many others. This enables a cohesive and unified data architecture, facilitating data ingestion, storage, and analysis across multiple platforms.In this course, you will learn:Understanding its internal workings.What its benefits are.How to create a Datafusion instance.Using Google Cloud Storage as data input.Using BigQuery as a Data Lake (Bronze and Silver layers).Advanced features of BigQuery: Partitioned tables and MERGE command.Ingesting data from different sources.Transforming data with Wrangle (low code) and queries.Creating DAGs for data ETL (Extract, Transform, Load) and dependencies.Scheduling and inter-DAG dependencies.
Overview
Section 1: Introduction
Lecture 1 1.1 Get to Know the Teacher
Lecture 2 1.2 Get to Know the Course
Lecture 3 1.3 Introduction to Google Datafusion
Lecture 4 1.4 Architecture and Components
Lecture 5 1.5 Creating a Datafusion Instance
Lecture 6 1.6 Instance Types and Pricing
Lecture 7 1.7 Understanding a Datafusion Instance
Section 2: Developing Data Pipelines
Lecture 8 2.1 GCS Object Storage
Lecture 9 2.2 Big Query as Datalake
Lecture 10 2.3 Working with Semi Structured Data
Lecture 11 2.4 Pipeline Studio and Wangler
Lecture 12 2.5 Preview and Debug
Lecture 13 2.6 Sinking data on Big Query
Lecture 14 ERROR - Importing json pipeline from other Datafusion Instance
Lecture 15 2.7 Branching the Pipeline
Lecture 16 2.8 Move files
Lecture 17 2.9 Big Query as Source
Lecture 18 2.10 Transforming Data with Wrangler 1
Lecture 19 2.11 Transforming Data with Wrangler 2
Lecture 20 2.12 Transforming Data with Big Query
Lecture 21 2.13 Execute Query in Datafusion
Lecture 22 2.14 Data Partitioning in Big Query
Lecture 23 2.15 MERGE statement
Lecture 24 2.16 Delete temp Tables
Lecture 25 2.17 Scheduling and Pipeline Dependencies
Lecture 26 2.18 ERRO - Quota DISKS_TOTAL_GB Exceed
Lecture 27 2.19 Challenge
Data Engineers,Data Analysts,Data Scientists,Analytics Engineer


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/1e79a29458ec5da06a44f30504150829/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part1.rar.html
https://rapidgator.net/file/5d11b34f44e2393fe7d4050ad04d2f75/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part2.rar.html
https://rapidgator.net/file/047566545f22ebdcb360138efbe782e0/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part3.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/d336a656b156a6Cc/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part1.rar
https://uploadgig.com/file/download/Aacc8B57344eC786/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part2.rar
https://uploadgig.com/file/download/8f7e2bF8ef68abd3/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part3.rar

nitroflare.com:
Citar
https://nitroflare.com/view/1A0765637C22791/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part1.rar
https://nitroflare.com/view/09FC4FAA8C68DC1/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part2.rar
https://nitroflare.com/view/F0AB94A0B907CCD/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part3.rar

1dl.net:
Citar
https://1dl.net/3e9sr1u9zdyx/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part1.rar
https://1dl.net/4i5uc27q42w8/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part2.rar
https://1dl.net/y7gyxlu81318/erpgo.Data.Engineering.With.Google.Datafusion.And.Big.Query.Cdap.part3.rar