* Cantinho Satkeys

Refresh History
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46
  • Cocanate: boas minha gente
    24 de Janeiro de 2026, 01:26

Autor Tópico: Practical Design Of A Neural Network In C++[Step By Step]  (Lida 185 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Practical Design Of A Neural Network In C++[Step By Step]
« em: 16 de Dezembro de 2022, 10:28 »


Published 12/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 810.75 MB | Duration: 1h 49m

Neural network Simulator design in C++

What you'll learn
The student will learn how to design the structure of a neural network including its neurons, bias, input layer, hidden layers, output layers and weights
The student will have a clear understanding of how the feed forward mechanism is used to shift inputs from the input layer through the output layer
The student will learn how to calculate the Root Mean Square error, output and hidden gradient, transfer function and the derivatives for a neural network
The student will also carryout back propagation on a neural network after the feed forward and use it for adjusting the weights of the neurons.
The student will learn how to generate training samples
Requirements
Theoritical Understanding of neural network, feed forward and back propagation
Basic knowledge of C++ is required
Description
This course teaches the practical design of a Neural network simulator using C++. It is recommended for all levels of C++ programmers with a theoretical knowledge of Neural network and looking forward to implement them in practice. The course interactively simulates the Neural network from the design of the class called Neuron, to the implementation of the Neuron layers in Vectors and finally the top level design consisting of the input layer, hidden layer and the output layer. Some random training samples will be generated which will be feed to the input layer through a vector and progress to the output layer through feed forward. The back propagation is also implemented which enables us to calculate the error and update the weight for a more accurate result. The training samples used in this course is for demonstration as the concept of sample generation is well explained. At the end of the course the student should be able generate real samples for testings. Some of the Core concepts we will learn in this course includes:Feed forward .Bias Neuron.Transfer function.Back propagation.Activation function.Root mean square error.Transfer function derivative.Generating training samples.Output and hidden layer Gradient.Some of the C++ concepts used includes:Assert()prototypingClass designNested VectorsReference VariablesStatic class variablesData hiding and encapsulation
Overview
Section 1: Introduction
Lecture 1 01. Introduction
Lecture 2 downloadable zip , course files
Lecture 3 02. Accessing the Number of layers and Neurons from command line
Lecture 4 03. Generating the Training samples
Lecture 5 04. Developing the Neural Network structure
Lecture 6 05. Testing our Neural Network structure
Lecture 7 06. Extracting our Training samples from text file
Lecture 8 07. Implementing the feed forward mechanism
Lecture 9 08. Extracting and displaying the results of our training
Lecture 10 09. Back propagation and calculating RMS and gradients
Lecture 11 10. Updating the weight of our Neurons
Lecture 12 11. Exercise and conclusion
All levels C++ developer


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/2999be77dda7ccdfa460a7402521b66e/pfjlz.Practical.Design.Of.A.Neural.Network.In.CStep.By.Step.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/E5db9F1823157af7/pfjlz.Practical.Design.Of.A.Neural.Network.In.CStep.By.Step.rar

nitroflare.com:
Citar
https://nitroflare.com/view/F4C32C87C43EDE0/pfjlz.Practical.Design.Of.A.Neural.Network.In.CStep.By.Step.rar

1dl.net:
Citar
https://1dl.net/elrbq6yihjak/pfjlz.Practical.Design.Of.A.Neural.Network.In.CStep.By.Step.rar