* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46
  • Cocanate: boas minha gente
    24 de Janeiro de 2026, 01:26
  • joca34: BOM DIA AL TEM ESTE CD Star Music - A Minha prima Palmira
    23 de Janeiro de 2026, 15:23
  • joca34: OLA
    23 de Janeiro de 2026, 15:23
  • FELISCUNHA: Bom dia pessoal  4tj97u<z
    23 de Janeiro de 2026, 10:59
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 classic
    23 de Janeiro de 2026, 05:16
  • j.s.: try65hytr a todos  49E09B4F
    20 de Janeiro de 2026, 18:15
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    20 de Janeiro de 2026, 11:07
  • j.s.: dgtgtr a todos  49E09B4F
    18 de Janeiro de 2026, 16:02
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Janeiro de 2026, 11:18
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    16 de Janeiro de 2026, 04:50
  • j.s.: try65hytr a todos  49E09B4F 49E09B4F
    15 de Janeiro de 2026, 19:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Janeiro de 2026, 11:51

Autor Tópico: Approximability of Optimization Problems through Adiabatic Quantum Computation  (Lida 174 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline oaxino

  • Moderador Global
  • ***
  • Mensagens: 49354
  • Karma: +0/-0


English | PDF | 2014 | 115 Pages | ISBN : 1627055568 | 1.1 MB


The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2ⁿ x 2ⁿ, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms.

DOWNLOAD

rapidgator.net:
Citar
https://rapidgator.net/file/cd23a66327d56491644a1adb60308913/eofqh.Approximability.of.Optimization.Problems.through.Adiabatic.Quantum.Computation.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/50562A5D885A554/eofqh.Approximability.of.Optimization.Problems.through.Adiabatic.Quantum.Computation.pdf