* Cantinho Satkeys

Refresh History
  • sacana10: Bom dia a todos
    Hoje às 13:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    Hoje às 10:13
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2026, 17:37
  • j.s.: dgtgtr a todos  49E09B4F
    14 de Fevereiro de 2026, 17:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    14 de Fevereiro de 2026, 11:28
  • mario: ola boa tarde
    13 de Fevereiro de 2026, 17:16
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 classic
    13 de Fevereiro de 2026, 05:56
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00

Autor Tópico: Foundations of Machine Learning, Second Edition  (Lida 262 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline oaxino

  • Moderador Global
  • ***
  • Mensagens: 49356
  • Karma: +0/-0
Foundations of Machine Learning, Second Edition
« em: 28 de Novembro de 2022, 16:18 »


English | PDF | 2018 | 505 Pages | ISBN : 0262039400 | 8.30 MB


A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.
This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.
Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.
This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

DOWNLOAD

rapidgator.net:
Citar
https://rapidgator.net/file/40e74e6e8619727d51aa4d1578334bcf/itwrs.Foundations.of.Machine.Learning.Second.Edition.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/8388889DA5705E1/itwrs.Foundations.of.Machine.Learning.Second.Edition.pdf