* Cantinho Satkeys

Refresh History
  • cereal killa:
    31 de Dezembro de 2025, 19:38
  • JPratas:
    31 de Dezembro de 2025, 18:41
  • j.s.: tenham um excelente ano de 2026 43e5r6 49E09B4F
    31 de Dezembro de 2025, 17:18
  • j.s.: dgtgtr a todos  49E09B4F
    31 de Dezembro de 2025, 17:17
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano de 2026  4tj97u<z
    31 de Dezembro de 2025, 11:55
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 Continuação de Boas Festas vx4s5
    31 de Dezembro de 2025, 06:23
  • m1957: Um excelente ano de 2025 muito próspero!
    30 de Dezembro de 2025, 23:35
  • FELISCUNHA: dgtgtr  e continuação de boas festas  :smiles_natal:
    26 de Dezembro de 2025, 17:56
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01

Autor Tópico: Foundations of Machine Learning, Second Edition  (Lida 233 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline oaxino

  • Moderador Global
  • ***
  • Mensagens: 49340
  • Karma: +0/-0
Foundations of Machine Learning, Second Edition
« em: 28 de Novembro de 2022, 16:18 »


English | PDF | 2018 | 505 Pages | ISBN : 0262039400 | 8.30 MB


A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.
This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.
Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.
This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

DOWNLOAD

rapidgator.net:
Citar
https://rapidgator.net/file/40e74e6e8619727d51aa4d1578334bcf/itwrs.Foundations.of.Machine.Learning.Second.Edition.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/8388889DA5705E1/itwrs.Foundations.of.Machine.Learning.Second.Edition.pdf