* Cantinho Satkeys

Refresh History
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35

Autor Tópico: YOLOv7 Masterclass : Deep Learning - Computer Vision Course  (Lida 95 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
YOLOv7 Masterclass : Deep Learning - Computer Vision Course
« em: 01 de Novembro de 2022, 13:11 »


YOLOv7 Masterclass : Deep Learning - Computer Vision Course
Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 34 lectures (2h 11m) | Size: 1.2 GB
Train YOLOv7 using your custom dataset and perform object detection. Pose Estimation, Instance Segmentation, LabelImg.

What you'll learn
How to run, from scratch, a Python Deep Learning program to detect 80 object classes in < 10 minutes
How to install and train YOLOv7 using your own custom dataset
Understand YOLOv7 architecture and how it really works
Easily understand The Fundametal Theory of Deep Learning and How exactly Convolutional Neural Networks Work
How to perform object detection for image, video and real-time using webcam/camera
How to find dataset | Data anotation | Dataset splitting
By following the course, at the end, you will have a masker detection using YOLOv7
Requirements
Programming experience is an advantage but not required
Windows laptop/PC
Description
Welcome to the YOLOv7 Masterclass: Deep Learning Computer Vision Course. YOLOv7 is the state-of-the-art object detection deep learning model. It is the fastest, it is the most accurate. YOLOv7 is also the newest official version of YOLO.
What will you learn
1. How to run, from scratch, a YOLOv7 program to detect 80 types of objects in < 10 minutes.
2. YOLO evolution from YOLOv1 to YOLOv7.
3. What is the real performance comparison, based on our experiment.
4. What are the advantages of YOLO compares to other deep learning models.
5. What's new in YOLOv7.
6. How artificial neural networks work (neuron, perceptron, feed-forward network, hidden layers, fully connected layers, etc).
7. Different Activation functions and how they work (Sigmoid, tanh, ReLU, Leaky ReLU, Mish, and SiLU).
8. How convolutional neural networks work (convolution process, pooling layer, flattening, etc).
9. Different computer vision problems (image classification, object localization, object detection, instance segmentation, semantic segmentation).
10. YOLOv7 architecture in detail.
11. How to find the dataset.
12. How to perform data annotation using LabelImg.
13. How to automatically split a dataset.
14. A detailed step-by-step YOLOv7 installation.
15. Train YOLOv7 on a custom dataset.
16. Visualize your training result using Tensorboard.
17. Test the trained YOLOv7 model on image, video, and webcam.
18. At the end of the course, you will have a robust mask detector.
Who this course is for
Undergraduate/graduate students who are taking computer vision using deep learning as their final project
Any one who is interested in learning Deep Learning and How to Apply it in solving Computer Vision problem

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/17393b10c351b7d188bd9f53cfe357da/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part1.rar.html
https://rapidgator.net/file/3dcde8d4017bfa4ee79f853c1d98ebe4/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part2.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/e7e79F96b4fc95BF/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part1.rar
https://uploadgig.com/file/download/E72866badccd22c8/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part2.rar

nitroflare.com:
Citar
https://nitroflare.com/view/CD8329B0213EA31/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part1.rar
https://nitroflare.com/view/D11BD75D15E5E54/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part2.rar

1dl.net:
Citar
https://1dl.net/qzdlgcnbksw4/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part1.rar.html
https://1dl.net/37idw3rk10mg/smtmm.YOLOv7.Masterclass..Deep.Learning..Computer.Vision.Course.part2.rar.html