* Cantinho Satkeys

Refresh History
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35

Autor Tópico: Machine Learning In Python - From A To Z Machine Learning  (Lida 98 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Machine Learning In Python - From A To Z Machine Learning
« em: 26 de Outubro de 2022, 16:39 »


Machine Learning In Python - From A To Z Machine Learning
Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 872.88 MB | Duration: 3h 19m

Learn Machine Learning Algorithms and their Python Implementations for your Data Science career.

What you'll learn
Learn the theories behind the Machine Learning Algorithms
Learn applying the Machine Learning Algorithms in Python
Learn feature engineering
Learn Python fundamentals
Requirements
No requirements. Just willingness to learn is enough.
Description
Welcome to the Machine Learning in Python - From A to Z course. This course aims to teach students the machine learning algorithms by simplfying how they work on theory and the application of the machine learning algorithms in Python. Course starts with the basics of Python and after that machine learning concepts like evaluation metrics or feature engineering topics are covered in the course. Lastly machine learning algorithms are covered. By taking this course you are going to have the knowledge of how machine learning algorithms work and you are going to be able to apply the machine learning algorithms in Python. We are going to be covering python fundamentals, pandas, feature engineering, machine learning evaluation metrics, train test split and machine learning algorithms in this course. Course outline isPython FundamentalsPandas LibraryFeature EngineeringEvaluation of Model PerformancesSupervised vs Unsupervised LearningMachine Learning AlgorithmsThe machine learning algorithms that are going to be covered in this course is going to be Linear Regression, Logistic Regression, K-Nearest Neighbors, Support Vector Machines, Decision Tree, Random Forests and K-Means Clustering. If you are interested in Machine Learning and want to learn the algorithms theories and implementations in Python you can enroll into the course. You can always ask questions from course Q&A section. Thanks for reading the course description, have a nice day.
Overview
Section 1: Python Fundamentals
Lecture 1 Print & Comments
Lecture 2 Variables part 1
Lecture 3 Variables part 2
Lecture 4 Data types part 1
Lecture 5 Data types part 2
Lecture 6 Operators
Lecture 7 If Statements
Lecture 8 Loops
Lecture 9 Functions
Section 2: Pandas
Lecture 10 Pandas
Lecture 11 Pandas 2
Lecture 12 Pandas 3
Section 3: Feature Engineering
Lecture 13 Feature Scaling
Lecture 14 Feature Scaling in Python
Lecture 15 Label Encoding
Lecture 16 One Hot Encoding
Lecture 17 Outlier Detection
Section 4: Evaluation of the model performances
Lecture 18 Train-Test Split
Lecture 19 MSE - RMSE
Lecture 20 Confusion Matrix - Accuracy Score
Section 5: Machine Learning - Supervised vs Unsupervised
Lecture 21 Supervised vs Unsupervised Machine Learning
Section 6: Data set we are going to use in regression tasks
Lecture 22 EDA
Lecture 23 Feature Engineering
Section 7: Data set we are going to use in classification algorithms
Lecture 24 EDA
Lecture 25 Feature Engineering
Section 8: Linear Regression
Lecture 26 Linear Regression
Lecture 27 Linear Regression 2
Lecture 28 Linear Regression 3
Lecture 29 Linear Regression Coding
Section 9: Logistic Regression
Lecture 30 Logistic Regression
Lecture 31 Logistic Regression Coding
Section 10: K Nearest Neighbors
Lecture 32 K Nearest Neighbors
Lecture 33 K-Nearest Neighbors Coding (Elbow Method)
Lecture 34 K-Nearest Neighbors Coding
Section 11: Support Vector Machines
Lecture 35 Support Vector Machines
Lecture 36 Support Vector Regression Coding
Section 12: Decision Tree
Lecture 37 Decision Tree
Section 13: Random Forest
Lecture 38 Random Forest
Lecture 39 Random Forest Regression
Section 14: Finding the best performing algorithm
Lecture 40 About this section
Lecture 41 For regression data
Lecture 42 For classification data
Lecture 43 Classification part 2
Section 15: K-means Clustering
Lecture 44 K-means Clustering
People who wants to learn Machine Learning,People who wants to learn Python


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/c2a275bb636eece19103f54f62478b85/jkexg.Machine.Learning.In.Python..From.A.To.Z.Machine.Learning.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/Aee78Fd2ae238389/jkexg.Machine.Learning.In.Python..From.A.To.Z.Machine.Learning.rar

nitroflare.com:
Citar
https://nitroflare.com/view/5A0CA8D99E55102/jkexg.Machine.Learning.In.Python..From.A.To.Z.Machine.Learning.rar

1dl.net:
Citar
https://1dl.net/wh0yrszw4mgu/jkexg.Machine.Learning.In.Python..From.A.To.Z.Machine.Learning.rar.html