* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    Hoje às 10:40
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51

Autor Tópico: Machine Learning Neural networks from scratch  (Lida 129 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Machine Learning Neural networks from scratch
« em: 20 de Setembro de 2022, 07:22 »


Published 09/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 30 lectures (4h 54m) | Size: 1.77 GB
Implementation of neural networks from scratch (Python)

What you'll learn
What are neural networks
Implement a neural network from scratch (Python, Java, C, ...)
Training neural networks
Activation functions and the universal approximation theorem
Strengthen your knowledge in Machine Learning and Data Science
Implementation tricks: Jacobian-Vector product & log-sum-exp trick
Requirements
Basic knowledge of programming, algebra and analysis
Description
In this course, we will implement a neural network from scratch, without dedicated libraries. Although we will use the python programming language, at the end of this course, you will be able to implement a neural network in any programming language.
We will see how neural networks work intuitively, and then mathematically. We will also see some important tricks, which allow stabilizing the training of neural networks (log-sum-exp trick), and to prevent the memory used during training from growing exponentially (jacobian-vector product). Without these tricks, most neural networks could not be trained.
We will train our neural networks on real image classification and regression problems. To do so, we will implement different cost functions, as well as several activation functions.
This course is aimed at developers who would like to implement a neural network from scratch as well as those who want to understand how a neural network works from A to Z.
This course is taught using the Python programming language and requires basic programming skills. If you do not have the required background, I recommend that you brush up on your programming skills by taking a crash course in programming. It is also recommended that you have some knowledge of Algebra and Analysis to get the most out of this course.
Concepts covered
Neural networks
Implementing neural networks from scratch
Gradient descent and Jacobian matrix
The creation of Modules that can be nested in order to create a complex neural architecture
The log-sum-exp trick
Jacobian vector product
Activation functions (ReLU, Softmax, LogSoftmax, ...)
Cost functions (MSELoss, NLLLoss, ...)
This course will be frequently updated, with the addition of bonuses.
Don't wait any longer before launching yourself into the world of machine learning!
Who this course is for
For developers who would like to implement a neural network without using dedicated libraries
For those who study machine learning and would like to strengthen their knowledge about neural networks and automatic differentiation frameworks
For those preparing for job interviews in data science
To artificial intelligence enthusiasts

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/8ecb8ec65f500b82558d040b06390ab4/lxozi.Machine.Learning.Neural.networks.from.scratch.part1.rar.html
https://rapidgator.net/file/0f1f0815b8a05d9206a0bc2f1bfac552/lxozi.Machine.Learning.Neural.networks.from.scratch.part2.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/aEd55A05141aec2E/lxozi.Machine.Learning.Neural.networks.from.scratch.part1.rar
https://uploadgig.com/file/download/740e6c314285F2b5/lxozi.Machine.Learning.Neural.networks.from.scratch.part2.rar

1dl.net:
Citar
https://1dl.net/3bsn772wkmj0/lxozi.Machine.Learning.Neural.networks.from.scratch.part1.rar.html
https://1dl.net/4w3anudcy1wn/lxozi.Machine.Learning.Neural.networks.from.scratch.part2.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/AC58AF609045127/lxozi.Machine.Learning.Neural.networks.from.scratch.part1.rar
https://nitroflare.com/view/D97C9755F7C85E1/lxozi.Machine.Learning.Neural.networks.from.scratch.part2.rar