* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    Hoje às 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46

Autor Tópico: The Ultimate Beginners Guide to Python Recommender Systems  (Lida 190 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
The Ultimate Beginners Guide to Python Recommender Systems
« em: 05 de Julho de 2021, 09:15 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 29 lectures (3h 52m) | Size: 1 GB
Use collaborative filtering to recommend movies to users! Implementations step by step from scratch!

What you'll learn:
Understand the basics about recommender systems
Understand the theory and mathematical calculations of collaborative filtering
Implement user-based collaborative filtering and item-based collaborative filtering step by step in Python
Use the following libraries for recommender systems: LibRecommender and Surprise
Use the MovieLens dataset to generate movie recommendations for users

Requirements
Programming logic
Basic Python programming

Description
Recommender systems are a hot topic in ​​Artificial Intelligence and are widely used for a lot of companies. They are everywhere recommending movies, music, videos, products, services, and so on. For example, when you finish watching a movie on Netflix, other movies you might like are indicated for you. This is the classic example of a recommender system!

In this course, you will learn in theory and practice how recommender systems work! You will implement an algorithm based on the collaborative filtering technique applied to movie recommendations (user-based filtering and item-based filtering). We are going to use a small dataset to test all mathematical calculations. Then, we will test our algorithm using the famous MovieLens dataset, which has more than 100.000 instances. At the end of the course (after implementing the algorithm from scratch), you will learn how to use two pre-built libraries: LibRecommender and Surprise!

What makes this course unique is that you will implement step by step from scratch in Python, learning all mathematical calculations. This can be considered the first course on recommender systems, so, if you have never heard about how to implement them, at the end you will have all the theoretical and practical background to develop some simple projects and also take more advanced courses. See you in class!

Who this course is for
People interested in recommender systems
Students who are studying subjects related to Artificial Intelligence
Data Scientists who want to increase their knowledge in recommender systems
Professionals interested in developing recommender systems
Beginners who are starting to learn recommender systems


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction