* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 classic
    Hoje às 05:56
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50

Autor Tópico: Big Data code optimization in Python NumPy: sound processing  (Lida 223 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 57 lectures (7h 5m) | Size: 2.61 GB
Big Data code optimization in Python NumPy + sound processing in MoviePy + binarizing images in computer vision - Pillow

What you'll learn:
Code optimization in Python using the NumPy library
Sound processing in Python using the MoviePy library
Fundamentals of digital images

Requirements
Basic level in Python: loops, conditions

Description
Programming is one of the most flexible fields I know of. You can create a program that achieves a certain task in so many ways. However, that does not mean that all ways are equal. Some are better than others.

That is especially visible when your program has to work with big data. Working with big data means working with gigantic arrays and matrices.

You can create a program that achieves the same task like the other one, but it does so 1000 times faster. It all depends on how you code and which coding practices you use.

And this is what you will learn here. You will learn the good and the bad coding practices, so that you would learn to code the right way when dealing with big data.

In this 100% project based course, we will use Python, the Numpy and the Moviepy library to create a fully functional sound processing program.

This program will import your videos in sequence, extract their audio, automatically identify the silent intervals in that audio, and then cut them out while still keeping some silence on the edges to preserve a bit of pause in between sentences.

Sound processing naturally deals with millions and millions array elements and so it really matters how we write that program. We will do it in a bad way and in a good way, because I want you to see both sides of the coin.

In the end, you will see that the last version of your Python Numpy code will be more than 1000 times faster than the first version, and so, you will see how to code and how definitely not to code.

Finally, I really want you to see that this knowledge is universal and can be applied in other fields as well, not only audio processing. And therefore, in the last section, there will be an assignment in computer vision.

Digital images are in fact, gigantic matrices, and so, it really matters how you handle them in the code. We will build a small program that can binarize these images and we will also do it in a good and in a bad way.

We will use the Python image processing library called Pillow to process all this big data inside the image matrices.

After this course, you will know how to approach programming in the right way from the beginning. Take a look at some of my free preview videos and if you like what you see, then, ENROLL NOW and let's get started! I'll see you inside.

Who this course is for
Engineering students
Engineering professionals
Data Scientists
Engineering & Programming hobbyists
Programmers


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction