* Cantinho Satkeys

Refresh History
  • worrierblack: 4tj97u<z
    Hoje às 03:09
  • worrierblack: hello
    Hoje às 03:09
  • worrierblack: hello
    Hoje às 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18

Autor Tópico: Unsupervised Machine Learning with Python  (Lida 212 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Unsupervised Machine Learning with Python
« em: 02 de Maio de 2021, 10:35 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 4.18 GB | Duration: 9h 21m

What you'll learn
Clustering Algorithms: Hierarchical, DBSCAN, K Means, Gaussian Mixture Model
Dimensions Reduction: Principal Component Analysis (PCA)
Implementation of clustering algorithms and principal component analysis in Python
Applications of clustering and PCA using real world data
Requirements
Basic knowledge of Linear Algebra including vectors, matrices, transpose, matrix multiplications, linear spaces
Basic knowledge of Probability and Statistics including mean, covariance, and normal distributions
Ability to program in Python 3
Ability to run Python 3 programs on local machine in Jupyter notebooks and command window
Description
Unsupervised Machine Learning involves finding patterns in datasets.

After taking this course, students will be able to understand, implement in Python, and apply algorithms of Unsupervised Machine Learning to real-world datasets.

This course is designed for:

Scientists, engineers, and programmers and others interested in machine learning/data science

No prior experience with machine learning is needed

Students should have knowledge of

Basic linear algebra (vectors, transpose, matrices, matrix multiplication, inverses, determinants, linear spaces)

Basic probability and statistics (mean, covariance matrices, normal distributions)

Python 3 programming

The core of this course involves detailed study of the following algorithms:

Clustering: Hierarchical, DBSCAN, K Means & Gaussian Mixture Model

Dimension Reduction: Principal Component Analysis

The course presents the math underlying these algorithms including normal distributions, expectation maximization, and singular value decomposition. The course also presents detailed explanation of code design and implementation in Python, including use of vectorization for speed up, and metrics for measuring quality of clustering and dimension reduction.

The course codes are then used to address case studies involving real-world data to perform dimension reduction/clustering for the Iris Flowers Dataset, MNIST Digits Dataset (images), and BBC Text Dataset (articles).

Plenty of examples are presented and Descriptions and animations are used to help students get a better understanding of the algorithms.

Course also includes a number of exercises (theoretical, Jupyter Notebook, and programming) for students to gain additional practice.

All resources (presentations, supplementary documents, demos, codes, solutions to exercises) are downloadable from the course Github site.

Students should have a Python installation, such as the Anaconda platform, on their machine with the ability to run programs in the command window and in Jupyter Notebooks

Who this course is for:
Scientists, engineers and programmers interested in data science/machine learning

Screenshots

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction