* Cantinho Satkeys

Refresh History
  • worrierblack: 4tj97u<z
    Hoje às 03:09
  • worrierblack: hello
    Hoje às 03:09
  • worrierblack: hello
    Hoje às 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18

Autor Tópico: Data Analysis Bootcamp - Python, Seaborn and Pandas  (Lida 201 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Data Analysis Bootcamp - Python, Seaborn and Pandas
« em: 25 de Março de 2021, 12:41 »

MP4 | h264, 1280x720 | Lang: English | Audio: AAC, 48000 Hz | 5h 47m | 2.09 GB

What you'll learn
Perform a multitude of data operations in Python's popular "pandas" library including grouping, pivoting, joining and more!
Learn hundreds of methods and attributes across numerous pandas objects
Resolve common issues in broken or incomplete data sets

Description
Are you interested to learn how zetabytes of data are processed by top tech companies to analyze data in order to boost their business growth? Well, for a beginner you are at the right place and this is most probably the right time for you to learn this.

The average data scientist today earns $123,000 a year, according to Indeed research. But the operating term here is "today," since data science has paid increasing dividends since it really burst into business consciousness in recent years.

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more!

You will learn how to:

Import data sets

Clean and prepare data for analysis

Manipulate pandas DataFrame

Summarize data

Build machine learning models using scikit-learn

Build data pipelines

Data Analysis with Python is delivered through lectures, hands-on labs, and assignments. It includes the following parts:

Data Analysis libraries: will learn to use Pandas DataFrames, Numpy multi-dimensional arrays, and SciPy libraries to work with various datasets. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions.

Who this course is for:
Data analysts and business analysts
Anyone who wants to learn Data Analysis
Excel users looking to learn a more powerful software for data analysis
Beginner Data Analyst

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction