* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Stock Market Data Analysis & Visualization w/ Python & More  (Lida 83 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117564
  • Karma: +0/-0
Stock Market Data Analysis & Visualization w/ Python & More
« em: 23 de Março de 2021, 10:04 »
MP4 | h264, 1280x720 | Lang: English | Audio: aac, 48000 Hz | 6h 9m | 2.13 GB

What you'll learn
Calculate leading stock technical indicators or oscillators such as average directional movement index, commodity channel index, moving averages convergence/divergenc
Define multiple technical indicators based stock trading occasions through price crossovers confirmed by bands crossovers.
Assess stock trading strategies performance by comparing their annualized return, standard deviation and Sharpe ratio against buy and hold
Compute lagging stock technical indicators or overlays such as moving averages, Bollinger bands, parabolic stop and reverse.
Requirements
No necessary experience needed
Description
Learn stock technical analysis through a practical course with Python programming language using S&P 500® Index ETF historical data for back-testing. It explores main concepts from basic to expert level which can help you achieve better grades, develop your academic career, apply your knowledge at work, or do research as an experienced investor. All of this while referencing the best practitioners in the field.

Become a Stock Technical Analysis Expert in this Practical Course with Python

Read or download S&P 500® Index ETF prices data and perform technical analysis operations by installing related packages and running code on Python IDE.

Compute lagging stock technical indicators or overlays such as moving averages, Bollinger bands, parabolic stop, and reverse.

Calculate leading stock technical indicators or oscillators such as average directional movement index, commodity channel index, moving averages convergence/divergence, rate of change, relative strength index, stochastic oscillator, and Williams %R.

Determine single technical indicator-based stock trading opportunities through price, double, bands, centerline, and signal crossovers.

Define multiple technical indicators based on stock trading occasions through price crossovers confirmed by bands crossovers.

Outline long (buy) or short (sell) stock trading strategies based on single or multiple technical indicators trading openings.

Evaluate stock trading strategies performances by comparing them against the buy and hold benchmark.

Who this course is for:
Undergraduates or postgraduates at any knowledge level who want to learn about stock market data analysis and visualisation using Python programming language.
Experienced investors who desire to research stock technical trading strategies.
Anyone who is interested to learning stock market data analysis
Finance professionals or academic researchers who wish to deepen their knowledge in quantitative finance.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction