* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Fourier and Laplace Transforms  (Lida 89 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117505
  • Karma: +0/-0
Fourier and Laplace Transforms
« em: 05 de Dezembro de 2020, 15:37 »

Fourier and Laplace Transforms
Duration: 9h25m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 5.63 GB
Genre: eLearning | Language: English
An intuitive 3D approach backed up by a SOLID mathematical foundation (with MATLAB simulations). Let there be light !

What you'll learn
You will gain both a geometric intuition into the Fourier and Laplace transforms and a thorough mathematical grounding as well.
Everything you learn will be backed up by Matlab simulations and an online graphical calculator.
If you really want to understand the Fourier and Laplace transforms , how they work and why they work then this is the course for you.
A unique 3D graphical approach has been adopted to provide the intuition required to OWN this subject.

Requirements
Basic calculus and some imagination and enthusiasm.

Description
This course is an introduction to the Fourier and Laplace transforms. I introduce this subject both geometrically to give a good intuition using matlab simulations and also in a more formal mathematical way. This course would be useful for those studying signals , systems , signal processing or any other discipline where the Fourier and Laplace transforms are used. The graphical geometric approach used is quite unique and provides a great foundation for continuing studies. If you really want to understand the Fourier and Laplace transforms and not just apply the methods mindlessly then this course is for you.

I can assure you that if you are willing to take the time to comprehend the mathematics then the effort will be rewarded ten fold.  For example , Fourier transform (FT) , discrete time fourier transform (DTFT) , discrete frequency fourier transform (DFFT) , discrete time and frequency fourier transform , the fast fourier transform (FFT) , discrete versions of the  Laplace transform (Z-transform). How are they all related ? IF YOU CAN SEE THE WOOD FROM THE TREES THEN YOU WILL BE MASTER OF ALL YOU SURVEY and practical implementations of the mathematical ideas will seem like child's play !!!

Who this course is for:
This is a course targeted toward those who really want to understand the Fourier and Laplace transforms from both an intuitive geometric and formal mathematical stance.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction