* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    Hoje às 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Python : Data Analysis with Pandas Library  (Lida 128 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117505
  • Karma: +0/-0
Python : Data Analysis with Pandas Library
« em: 25 de Outubro de 2020, 12:01 »

Python : Data Analysis with Pandas Library
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 1.64 GB
Genre: eLearning Video | Duration: 9 lectures (4 hour, 5 mins) | Language: English

 The Ultimate Pandas Tutorial for Data Science Beginners

What you'll learn

    You will learn the basics of Pandas Library
    You will have clarity on Pandas Data structures - Series & Dataframes
    You will Play with Dataframes, Selecting columns & rows from a dataframe
    You will understand Subsetting of dataframes - df[start_index:end_index]
    You will get insights on Indexing
    You will get clarity on Dataframes merging and concatenating

Requirements

    Basic experience with the Python programming language
    Strong knowledge of data types (strings, integers, floating points, booleans) etc

Description

Pandas Background:

When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. pandas will help you to explore, clean and process your data. In pandas, a data table is called a DataFrame. Pandas supports the integration with many file formats or data sources out of the box (csv, excel, sql, json, parquet,. . . ). Importing data from each of these data sources is provided by function with the prefix read_*. Similarly, the to_* methods are used to store data.

Selecting or filtering specific rows and/or columns? Filtering the data on a condition? Methods for slicing, selecting, and extracting the data you need are available in pandas. There is no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a DataFrame based on existing data in other columns is straightforward.

Pandas has great support for time series and has an extensive set of tools for working with dates, times, and timeindexed data. Data sets do not only contain numerical data. pandas provides a wide range of functions to cleaning textual data and extract useful information from it.

In this course we cover:

Basics of Pandas Library

Pandas Data structures - Series & Dataframes

Playing with Dataframes, Selecting columns & rows from a dataframe

Subsetting of dataframes - df[start_index:end_index]

Indexing

Dataframes merging and concatenating

Python programming has become one of the most sought after programming languages in the world, with its extensive amount of features and the sheer amount of productivity it provides. Therefore, being able to code Pandas in Python, enables you to tap into the power of the various other features and libraries which will use with Python. Some of these libraries are NumPy, SciPy, MatDescriptionLib, etc.

Who this course is for:

    Data analysts and business analysts
    Excel users looking to learn a more powerful software for data analysis

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction