* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    11 de Julho de 2025, 03:54
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    10 de Julho de 2025, 10:40
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13

Autor Tópico: Unsupervised Machine Learning: Cluster Analysis Algorithms  (Lida 121 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Unsupervised Machine Learning: Cluster Analysis Algorithms
« em: 18 de Outubro de 2020, 11:06 »

Unsupervised Machine Learning: Cluster Analysis Algorithms
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 1.9 GB
Genre: eLearning Video | Duration: 33 lectures (5 hour, 17 mins) | Language: English
 Cluster Analysis: core concepts, working, evaluation of KMeans, Meanshift, DBSCAN, OPTICS, Hierarchical clustering

What you'll learn

    Understand the KMeans Algorithm and implement it from scratch
    Learn about various cluster evaluation metrics and techniques
    Learn how to evaluate KMeans algorithm and choose its parameter
    Learn about the limitations of original KMeans algorithm and learn variations of KMeans that solve these limitations
    Understand the DBSCAN algorithm and implement it from scratch
    Learn about evaluation, tuning of parameters and application of DBSCAN
    Learn about the OPTICS algorithm and implement it from scratch
    Learn about the cluster ordering and cluster extraction in OPTICS algorithm
    Learn about evaluation, parameter tuning and application of OPTICS algorithm
    Learn about the Meanshift algorithm and implement it from scratch
    Learn about evaluation, parameter tuning and application of Meanshift algorithm
    Learn about Hierarchical Agglomerative clustering
    Learn about the single linkage, complete linkage, average linkage and Ward linkage in Hierarchical Clustering
    Learn about the performance and limitations of each Linkage Criteria
    Learn about applying all the clustering algorithms on flat and non-flat datasets
    Learn how to do image segmentation using all clustering algorithms

Requirements

    Students should have some experience with Python.
    Some experience with data visualizations
    Some experience with Numpy
    Some background in computer science.

Description

Clustering is the activity of splitting the data into partitions that give an insight about the unlabelled data. It gives a structure to the data by grouping similar data points

We see these clustering algorithms almost everywhere in our everyday life. Cluster Analysis has and always will be a staple for all Machine Learning. Clustering has its applications in many Machine Learning tasks: label generation, label validation, dimensionality reduction, semi supervised learning, Reinforcement learning, computer vision, natural language processing.

For a data scientist, cluster analysis is one of the first tools in their arsenal during exploratory analysis, that they use to identify natural partitions in the data.

In this course, you will learn some of the most important algorithms used for Cluster Analysis

Each dataset and feature space is unique. You cannot use a one-size-fits-all method for recognizing patterns in the data. Each algorithm has its own purpose.

By studying the core concepts and working in detail and writing the code for each algorithm from scratch, will empower you, to identify the correct algorithm to use for each scenario.

Some algorithms are fast and are a good starting point to quickly identify the pattern of the data

And some algorithms are slow but more precise, and allow you to capture the pattern very accurately.

You will get to understand each algorithm in detail, which will give you the intuition for tuning their parameters and maximizing their utility

In this course, for cluster analysis you will learn five clustering algorithms:

You will learn about KMeans and Meanshift. These are two centroid based algorithms, which means their definition of a cluster is based around the center of the cluster.

Next you will study DBSCAN and OPTICS. These are density based algorithms, in which they find high density zones in the data and for such continuous density zones, they identify them as clusters.

Another type of algorithm that you will learn is Agglomerative Clustering, a hierarchical style of clustering algorithm, which gives us a hierarchy of clusters.

For each algorithm, you will understand the core working of the algorithm. What parameters they use. How to choose and tune these parameters. How to evaluate the results for each algorithm. To consolidate your understanding, you will also apply all these learnings on multiple datasets for each algorithm. You can later compare all the algorithms and their performance.

This course can be your only reference that you need, for learning about various clustering algorithms.

The correct approach to this course is going in the given order the first time.

Follow along the introductory lecture. It is highly recommended that during the coding lessons, you must code along. I have provided detailed jupyter notebooks along the course. You can keep them for reference. But it is highly recommended that you code along.

You can pause the lesson. Write the code needed and at the same time think about the working flow.

I assure you, there onwards, this course can be your go-to reference to answer all questions about these algorithms. You will have a lifetime of access to this course, and thus you can keep coming back to quickly brush up on these algorithms

Who this course is for:

                                                                                                                                                                                                            People interested in Machine Learning
    People who want to study unsupervised learning
    People who want to learn pattern recognition in data

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction