* Cantinho Satkeys

Refresh History
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36

Autor Tópico: Operationalize ML by Empowering People  (Lida 239 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Operationalize ML by Empowering People
« em: 08 de Agosto de 2020, 17:21 »

Operationalize ML by Empowering People
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 29M | 1.42 GB
Genre: eLearning | Language: English

We have been working on operationalizing ML for past few years at CapitalOne Bank and would like to share our experiences and lessons we learned in building an ML platform, in our talk we plan to cover:
- Self-Service for Data Scientists
- Treat models, policies & features as content, not software, and allow live updates to content
- Provide software engineering best practices to ML content(s)
- How to meet enterprise need at scale
- Lightweight services
- Re-use models, data, and business logic wherever possible
- Containerize software to simplify scaling
- Multi-layer abstractions
- Respond to real time events
- Keep data in close proximity
- Focus on low-latency communication and fast computations
- Architect high-reliability services

Some of the questions this session intend to answer:
- Every FinTech enterprise needs to operationalize ML but most of them don't know where to start, how to deliver and more importantly what not to do?
- What architecture choices to explore and what tools to build to satisfy demanding needs of a thriving data science organization.
- How can you build ways to include data scientists in the agile development process, leveraging their expertise in feature engineering while enabling them to take part in DevOps practices without needing full DevOps experience.
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction