* Cantinho Satkeys

Refresh History
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19

Autor Tópico: Boosting Machine Learning Models in Python  (Lida 222 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117476
  • Karma: +0/-0
Boosting Machine Learning Models in Python
« em: 19 de Março de 2020, 10:11 »

Boosting Machine Learning Models in Python
.MP4, AVC, 1920x1080, 30 fps | English, AAC, 2 Ch | 3h 7m | 590 MB
Instructor: Jakub Konczyk

Leverage ensemble techniques to maximize your machine learning models in Python

Learn

Discover and use the main concepts behind ensemble techniques and learn why they are important in applied machine learning
Learn how to use bagging to combine predictions from multiple algorithms and predict more accurately than from any individual algorithm
Use boosting to create a strong classifier from a series of weak classifiers and improve the final performance
Explore how even a very simple ensemble technique such as voting can help you maximize performance
Also learn a powerful and less well-known stacking technique, where you combine different models with another machine learning algorithm to focus on distinctive features of your dataset for each individual model
Evaluate which ensemble technique is good for a particular problem
Train, test, and evaluate your own XGBoost models

About

Machine learning ensembles are models composed of a few other models that are trained separately and then combined in some way to make an overall prediction. These powerful techniques are often used in applied machine learning to achieve the best overall performance.

In this unique course, after installing the necessary tools you will jump straight into the bagging method so as to get the best results from algorithms that are highly sensitive to specific data-for example, algorithms based on decision trees. Next, you will discover another powerful and popular class of ensemble methods called boosting. Here you'll achieve maximal algorithm performance by training a sequence of models, where each given model improves the results of the previous one. You will then explore a much simpler technique called voting, where results from multiple models are achieved using simple statistics such as the mean average. You will also work hands-on with algorithms such as stacking and XGBoost to improve performance.

By the end of this course, you will know how to use a variety of ensemble algorithms in the real world to boost your machine learning models.

Please note that a working knowledge of Python 3; the ability to run simple commands in Shell (Terminal); and also some basic machine learning experience are core prerequisites for taking and getting the best out of this course.

Features

Discover the high-level landscape of ensemble techniques and choose the best one for your particular use case
Learn the key ideas behind each ensemble technique to quickly understand its pros and cons-all while working on real-world examples
Work with XGBoost, the most popular ensemble algorithm, to train, test, and evaluate your own ML models
                

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction