* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    Hoje às 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: Mastering Data Science and Machine Learning Fundamentals  (Lida 214 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117301
  • Karma: +0/-0
Mastering Data Science and Machine Learning Fundamentals
« em: 13 de Agosto de 2019, 12:52 »

Mastering Data Science and Machine Learning Fundamentals
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 568 MB
Duration: 2 hours | Genre: eLearning | Language: English
A Beginner Course in Data Science, Machine Learning, Regression, Classification and Clustering (THEORY ONLY)

What you'll learn

    Mastering Data Science fundamentals
    Mastering Machine Learning Fundamentals
    How and when to use each Machine Learning model
    Make regression using Linear Regression, SVM, Decsision Trees and Ensemble Modeling
    Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees, Naive Bayes, and PCA

Requirements

    Just some high school mathematics level.

Description

Data Science and Machine learning is not just another buzzword. So many professionals who work in different areas such as IT, security, marketing, automation, and even medicine, know that machine learning is the key to development. Without it, so many amazing things that make our lives easier - such as spam-filtering, Google search, relevant ads, accurate weather forecasting or sport prediction - would be impossible. This course is the starting point you've been waiting for.

This course is designed for students and learners who want to demystify the concepts, statistics, and math behind machine learning algorithms, and who are curious to solve real-world problems using machine learning. The course is structured to start with the basics, and then to gradually develop an understanding of the array of machine learning and data science algorithms.

This ensures that no prior knowledge is required to start learning from this course. The content of this course is specially designed to encompass all the concepts that come under the domain of data science. This course not only guides you through the problems and concepts of machine learning but also elaborates how to successfully implement those concepts.

AI Sciences will draw on our expertise in data science and AI to guide you through what matters, and what doesn't.

Each concept is introduced in plain English, avoiding confusing mathematical notation and jargon. You won't find academic, deeply mathematical coverage of these algorithms in this course - the focus is on basics understanding of them.

We'll cover the data science, machine learning, and data mining techniques real employers are looking for, including:

    Linear Regression

    Support Vector Machine (SVM)

    Decision Tree and Random Forest

    Logistic Regression

    K-Nearest Neighbors (K-NN)

    Naive Bayes

    K-Means Clustering

    Hierarchical Clustering

    Evaluating Machine Learning Models Performance

    Neural Networks Best

    Practices for Data Scientist

    and much more!

If you're new  in the data science field, don't worry - the course starts with a crash course.

If you're a programmer looking to switch into an exciting new career track, or a data analyst looking to make the transition into the AI industry - this course will teach you the basic techniques used by real-world industry data scientists. These are topics any successful technologist absolutely needs to know about, so what are you waiting for?

Enroll now!

Who this course is for:

    Beginners who want to approach Machine Learning, but are too afraid of complex math to start
    Students and academicians, especially                                                                                                                                                                                                                        those focusing on Machine Learning
    Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way
             

               
 
Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction