* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    Hoje às 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: Building Features from Nominal Data  (Lida 175 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117301
  • Karma: +0/-0
Building Features from Nominal Data
« em: 13 de Agosto de 2019, 12:11 »

Building Features from Nominal Data
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2.5 Hours | 238 MB
Genre: eLearning | Language: English

This course covers various techniques for encoding categorical data, starting with the familiar forms of one-hot and label encoding, before moving to contrast coding schemes such as simple coding, Helmert coding and orthogonal polynomial coding.

The quality of preprocessing the numeric data is subjected to the important determinant of the results of machine learning models built using that data. In this course, Building Features from Nominal Data, you will gain the ability to encode categorical data in ways that increase the statistical power of models. First, you will learn the different types of continuous and categorical data, and the differences between ratio and interval scale data, and between nominal and ordinal data. Next, you will discover how to encode categorical data using one-hot and label encoding, and how to avoid the dummy variable trap in linear regression. Finally, you will explore how to implement different forms of contrast coding - such as simple, Helmert, and orthogonal polynomial coding, so that regression results closely mirror the hypotheses that you wish to test. When you're finished with this course, you will have the skills and knowledge of encoding categorical data needed to increase the statistical power of linear regression that includes such data.
           

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction