* Cantinho Satkeys

Refresh History
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50

Autor Tópico: Machine Learning with R Series K Nearest Neighbor (KNN), Linear Regression, and Text Mining  (Lida 393 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0

Machine Learning with R Series: K Nearest Neighbor (KNN), Linear Regression, and Text Mining
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1.5 Hours | 339 MB
Genre: eLearning | Language: English

Follow along with machine learning expert Zanis Khan and master a number of machine learning algorithms using R, including K Nearest Neighbor (K-NN), Linear Regression, and Text Mining in this video series covering these five topics:

Introducing Machine Learning. This first topic in this Machine Learning with R series will introduce you to the world of machine learning. The IDE we will be using during this video series is R Studio. Learn about the three components of every machine learning algorithm: Representation, Evaluation, and Optimization. Representation includes decision trees, graphical models, neural networks, support vector machines, and model ensembles. Evaluation includes accuracy, squared error, posterior probability, and entropy. Optimization includes combinatorial, convex, and constrained optimization. The types of machine learning algorithms are explained as well, including supervised (inductive) learning, unsupervised learning, semi-supervised learning, and reinforcement learning.
K Nearest Neighbor (KNN). This second topic in this Machine Learning with R series covers the K Nearest Neighbor (K-NN) algorithm in detail. Follow along with machine learning expert Zanis Khan and practice applying this algorithm.
Linear Regression. This third topic in this Machine Learning with R series covers the linear regression algorithm in detail. Linear regression establishes a relationship between a dependent variable and one or more independent variables. Follow along with machine learning expert Zanis Khan and practice applying this algorithm.
Text Mining Part 1. This fourth topic in this Machine Learning with R series explains text mining, which is the process of exploring and analyzing large amounts of unstructured text data to identify patterns in the data. Text mining use cases are explained, including classification of news stories, email filtering, and clustering documents or web pages.
Text Mining Part 2. This fifth topic in this Machine Learning with R series continues our coverage of text mining. This part is very much hands-on, so follow along with machine learning expert Zanis Khan and perform text mining to a data set.
           

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction