* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33
  • FELISCUNHA: try65hytr  pessoal   htg6454y
    26 de Junho de 2025, 21:33
  • JPratas: try65hytr Pessoal  4tj97u<z
    26 de Junho de 2025, 02:28
  • cereal killa: Boa Tarde Pessoal E com enorme tristeza que depois de 15 anos que idealizei e abri este fórum vejo que esta na iminência de fechar portas porque ninguém tenta ajudar o pagamento do servidor, mas cada ano e sempre difícil arranjar almas caridosas que nos bom ajudando mas este ano esta complicado, mas infelizmente e como diz o j.s dia 5/07 se não houver algumas ajudas esta vez vai mesmo fechar…..e pena e triste mas tudo na vida tem fim. obrigada cereal killa
    25 de Junho de 2025, 19:40

Autor Tópico: Machine Learning Series The Support Vector Machine (SVM) in Python  (Lida 277 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0

Machine Learning Series: The Support Vector Machine (SVM) in Python
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour | 192 MB
Genre: eLearning | Language: English

Dhiraj, a data scientist and machine learning evangelist, continues his teaching of machine learning algorithms by explaining both through lecture and practice the Support Vector Machine (SVM) algorithm in Python in this video series. Click here to watch all of Dhiraj Kumar's machine learning videos. Learn all about SVM in this video series covering these seven topics:

Introducing Support Vector Machines (SVMs). This first topic in the Support Vector Machine (SVM) series introduces this machine learning classification algorithm. SVM performs well even with a limited amount of data. Data points are inputed and the output is the hyper plane. The hyper plane is a line that separates the data, and this line is called the decision boundary. We explain how to use SVM with non linear data. Kernel Tricks are also covered.
Support Vector Machine (SVM) Advantages and Disadvantages. This second topic in the Support Vector Machine (SVM) series covers where SVM works well and where it doesn't work well. SVM works well with data that has a clear margin, in high dimensional spaces, is very memory efficient, and when the number of dimensions is greater than the number of samples. SVM does not work well with large data sets, with overlapping classes, when the data is non-probabilistic, and when the number of features for each data point exceeds the number of training data samples.
Support Vector Machine (SVM) Regression. This third topic in the Support Vector Machine (SVM) series explains how to perform regression analysis with the Support Vector Machine (SVM). When the Support Vector Machine (SVM) is used for regression, it is called Support Vector Regression (SVR). SVR does not depend on the dimensionality of the input space. Penalty Factors and epsilons are discussed as well. Python is used to show how to perform regression analysis.
Support Vector Machine (SVM) Classification. This fourth topic in the Support Vector Machine (SVM) series focuses on the Support Vector Machine (SVM) classifier. The classification concepts of Hyper Plane, Boundary Line, Support Vector, and Kernel are discussed as well. Maximum margin and hard margin are compared, and as with all prior topics, all concepts are demonstrated with Python in the Jupyter notebook.
Support Vector Machine (SVM) Parameter Tuning. This fifth topic in the Support Vector Machine (SVM) series explains how to tune different parameters of SVMs. The three different parameters are Kernel, Epsilon, and C-Penalty Co-efficient. Python is used to show how to perform parameter tuning.
Support Vector Machine (SVM) Prediction. This sixth topic in the Support Vector Machine (SVM) series explains how to do prediction after our SVM model is built. We will discuss how to store and share predictions. Python is used to show how to perform prediction.
Support Vector Machine (SVM) Evaluation. This seventh topic in the Support Vector Machine (SVM) series explains how to evaluate a Support Vector Machine (SVM) model. Once the machine learning model has been evaluated, we can use the feedback to improve the model until our model produces the desired accuracy. We will use a Confusion Matrix in Python to evaluate our Support Vector Machine (SVM) model.
             

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction