* Cantinho Satkeys

Refresh History
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    Hoje às 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    Hoje às 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00

Autor Tópico: COVID-19 Data Science Urban Epidemic Modelling and Visualization in Python  (Lida 333 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0


COVID-19 Data Science Urban Epidemic Modelling and Visualization in Python
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 27 Lessons (4h 9m) | Size: 2.2 GB

Interested in learning how to create spatial animated visualisations in Python? Want to learn it on the example of the Covid-19 coronavirus epidemic spreading in a real city with a real human mobility dataset? Then this course is for you!

You will learn how to use basic Python (3 or higher) to model the Covid-19 epidemic spreading in a city, do data analysis of real urban mobility data, run simulations of the epidemic in Jupyter Notebooks, and create beautiful complex animated visualisations on a city map.

All the data and Jupyter Notebooks with the code for this project will be provided for an immersive learning experience.

Covid-19 is a great case example for learning how to use Python for spatial analysis and visualisation. After completing this course you will be able to apply the techniques from this course to many other types of projects dealing with spatial data analysis and visualisation.

Assuming just a basic familiarity with Python numpy and matDescriptionlib libraries, we will go step-by-step through using real urban mobility data for modelling, simulating and visualising the spread of the epidemic in an urban environment. On the way, you will learn lots of tricks and tips for enhancing your Python coding skills and making even more compelling and complex data visualisations.

This course is a hands-on, practical course, making sure you can immediately apply the acquired skills to your own projects. The acquired spatial modelling, data visualisation, and spatial data science skills will be a valuable addition to your data science toolbox.

I will be there for you throughout this journey for any questions and doubts, so don't hesitate to begin and have a successful and satisfying experience!

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction