* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório   4tj97u<z
    30 de Novembro de 2025, 12:06
  • j.s.: tenham um excelente fim de semana  :smiles_natal:
    29 de Novembro de 2025, 14:19
  • j.s.: dgtgtr a todos  :13arvoresnatalmagiagifs:
    29 de Novembro de 2025, 14:18
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    29 de Novembro de 2025, 11:37
  • cereal killa: try65hytr pessoal ja cheira a prendas  erfb57j p0i8l
    28 de Novembro de 2025, 22:04
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic
    28 de Novembro de 2025, 05:14
  • FELISCUNHA: ghyt74  pessoal   k8h9m
    27 de Novembro de 2025, 11:42
  • j.s.: try65hytr a todos  4tj97u<z
    24 de Novembro de 2025, 20:57
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    23 de Novembro de 2025, 11:57
  • euro: Clube de Baile
    22 de Novembro de 2025, 17:55
  • cereal killa: dgtgtr pessoal inimigo  k8h9m ta um calor do karago  RGG45wj
    21 de Novembro de 2025, 15:46
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    21 de Novembro de 2025, 11:49
  • JPratas: try65hytr Pessoal  2dgh8i  classic k7y8j0 yu7gh8
    21 de Novembro de 2025, 03:37
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    20 de Novembro de 2025, 19:14
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    19 de Novembro de 2025, 12:09
  • j.s.: ghyt74 a todos  4tj97u<z 4tj97u<z
    18 de Novembro de 2025, 11:39
  • sacana10: Bom Dia a todos....
    15 de Novembro de 2025, 11:43
  • FELISCUNHA: ghyt74 pessoal   49E09B4F
    13 de Novembro de 2025, 09:46
  • j.s.: tenham um excelente fim de semana  49E09B4F
    08 de Novembro de 2025, 16:19
  • j.s.: dgtgtr a todos  4tj97u<z
    08 de Novembro de 2025, 16:18

Autor Tópico: Approximability of Optimization Problems through Adiabatic Quantum Computation  (Lida 154 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 47212
  • Karma: +0/-0


English | PDF | 2014 | 115 Pages | ISBN : 1627055568 | 1.1 MB


The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2ⁿ x 2ⁿ, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms.

DOWNLOAD

rapidgator.net:
Citar
https://rapidgator.net/file/cd23a66327d56491644a1adb60308913/eofqh.Approximability.of.Optimization.Problems.through.Adiabatic.Quantum.Computation.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/50562A5D885A554/eofqh.Approximability.of.Optimization.Problems.through.Adiabatic.Quantum.Computation.pdf