* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    Hoje às 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02
  • FELISCUNHA: ghyt74  e bom feriado  4tj97u<z
    15 de Agosto de 2025, 11:11
  • JPratas: try65hytr A Todos  htg6454y k7y8j0
    15 de Agosto de 2025, 04:06
  • FELISCUNHA: h7t45  j.s. pela informação
    13 de Agosto de 2025, 10:20
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    13 de Agosto de 2025, 10:19
  • j.s.: 4tj97u<z 4tj97u<z
    12 de Agosto de 2025, 17:37
  • j.s.: Relembramos que por mudança de servidor, que vai ter lugar entre as 20h00 do dia 13/0/2025 e as 10h00 do dia 14/08/2025, podemos neste periodo estar em off line
    12 de Agosto de 2025, 17:36
  • j.s.: dgtgtr a todos  4tj97u<z
    12 de Agosto de 2025, 17:33
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    09 de Agosto de 2025, 11:19
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i yu7gh8 k7y8j0
    08 de Agosto de 2025, 03:48
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Agosto de 2025, 08:43
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Agosto de 2025, 16:51
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    04 de Agosto de 2025, 11:48
  • ricardo 2087: Toy
    02 de Agosto de 2025, 22:21

Autor Tópico: Graph Neural Networks Essentials and Use Cases  (Lida 13 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124575
  • Karma: +0/-0
Graph Neural Networks Essentials and Use Cases
« em: 29 de Julho de 2025, 10:09 »


English | 2025 | ISBN: 3031885376 | 429 pages | True PDF,EPUB | 40.69 MB


This book explains the technologies and tools that underpin GNNs, offering a clear and practical guide to their industrial applications and use cases. AI engineers, data scientists, and researchers in AI and graph theory will find detailed insights into the latest trends and innovations driving this dynamic field. With practical chapters demonstrating how GNNs are reshaping various industry verticals-and how they complement advances in generative, agentic, and physical AI-this book is an essential resource for understanding and leveraging their potential.
The neural network paradigm has surged in popularity for its ability to uncover hidden patterns within vast datasets. This transformative technology has spurred global innovations, particularly through the evolution of deep neural networks (DNNs). Convolutional neural networks (CNNs) have revolutionized computer vision, while recurrent neural networks (RNNs) and their advanced variants have automated natural language processing tasks such as speech recognition, translation, and content generation.
Traditional DNNs primarily handle Euclidean data, yet many real-world problems involve non-Euclidean data-complex relationships and interactions naturally represented as graphs. This challenge has driven the rise of graph neural networks (GNNs), an approach that extends deep learning into new domains.
GNNs are powerful models designed to work with graph-structured data, where nodes represent individual data points and edges denote the relationships between them. Several variants have emerged
Graph Convolutional Networks (GCNs): These networks learn from a node's local neighborhood by aggregating information from adjacent nodes, updating the node's representation in the process.
Graph Attentional Networks (GATs): By incorporating attention mechanisms, GATs focus on the most relevant neighbors during aggregation, enhancing model performance.
Graph Recurrent Networks (GRNs): These networks combine principles from RNNs with graph structures to capture dynamic relationships within the data.
GNNs are applied in a variety of advanced use cases, including node classification, link prediction, graph clustering, anomaly detection, recommendation systems, and also in natural language processing and computer vision. They help forecast traffic patterns, analyze molecular structures, verify programs, predict social influence, model electronic health records, and map brain networks.

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/80b5e663a455ec3777d099c7cee713bc/zedwm.Graph.Neural.Networks.Essentials.and.Use.Cases.zip.html

nitroflare.com:
Citar
https://nitroflare.com/view/6942B5C8557442B/zedwm.Graph.Neural.Networks.Essentials.and.Use.Cases.zip