* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    Hoje às 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Agosto de 2025, 11:15

Autor Tópico: Mastering Numpy For Machine Learning (2024)  (Lida 104 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124928
  • Karma: +0/-0
Mastering Numpy For Machine Learning (2024)
« em: 08 de Abril de 2024, 09:17 »
Mastering Numpy For Machine Learning (2024)



Published 4/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.63 GB | Duration: 2h 35m

Efficient Data Manipulation and Array Operations for Seamless Machine Learning Implementation


What you'll learn
Introduction to NumPy: Covering basics, array creation, indexing, and slicing, providing a solid foundation for working with arrays efficiently.
Array Operations: Exploring arithmetic operations, aggregation functions like mean, sum, max, and min, and understanding element-wise operations for comprehensi
Array Manipulation: Delving into reshaping, stacking, splitting, and transposing arrays to understand and modify data structures effectively.
Indexing and Slicing: Mastering advanced techniques such as boolean indexing, fancy indexing, and conditional selection to extract and manipulate data subsets a
Random Number Generation: Exploring random sampling methods and probability distributions for simulations and statistical analysis tasks.
Performance Optimization: Covering vectorization, broadcasting, and other optimization techniques to write efficient, high-performance code for numerical comput
Requirements
Basics of Python Programming and Mathematics
Description
Mastering NumPy for Machine Learning: Essential Tools and Techniques" offers a comprehensive exploration of NumPy, the fundamental library for numerical computing in Python, tailored specifically for machine learning practitioners. This course equips participants with the essential skills and techniques required to efficiently manipulate data and perform array operations crucial for seamless implementation of machine learning algorithms.Participants will delve into the core concepts of NumPy, including array creation, indexing, slicing, and manipulation, providing a solid foundation for handling large datasets effectively. Through hands-on exercises and real-world examples, students will learn to leverage NumPy's array operations for arithmetic computations, aggregation functions, and element-wise operations, facilitating data preprocessing and feature engineering tasks.Moreover, the course covers advanced topics such as universal functions (ufuncs), linear algebra operations, random number generation, and file input/output, empowering participants to tackle complex machine learning challenges with confidence. Through optimization techniques like vectorization and broadcasting, students will discover strategies to enhance computational efficiency and streamline their machine learning workflows.By the end of the course, participants will emerge equipped with the expertise to leverage NumPy effectively in their machine learning projects, enabling them to manipulate data efficiently, perform numerical computations with ease, and accelerate the development and deployment of machine learning models.
Overview
Section 1: Introduction
Lecture 1 1. Numpy_Introduction
Lecture 2 2. Numpy_Array_Creation
Lecture 3 3. Numpy_Arange_Reshape
Lecture 4 4. Numpy_Array_Conversion
Lecture 5 5. Accessing Array Values
Lecture 6 6. Numpy_Operations
Lecture 7 7. Fancy Indexing and Sorting Arrays
Lecture 8 8. Array Products and Concatenation
Lecture 9 9. Broadcasting
Data Scientists: Seeking proficiency in handling and analyzing large datasets efficiently for tasks like data cleaning, exploration, and modeling.,Machine Learning Engineers/Practitioners: Wanting to master NumPy for implementing machine learning algorithms, performing data preprocessing, and working with multidimensional arrays.,Researchers: In fields such as physics, biology, engineering, etc., needing to perform complex numerical computations, simulations, and data analysis.,Statisticians: Requiring tools for statistical analysis, hypothesis testing, and exploring datasets with extensive numerical functionalities.,Software Developers: Interested in incorporating numerical computing capabilities into their applications, particularly those involving scientific or data-driven functionalities.,Students: Pursuing studies in computer science, data science, engineering, or related fields, wanting to gain foundational skills in numerical computing with Python.,Professionals in Finance and Economics: Looking to leverage NumPy for financial modeling, risk analysis, and portfolio optimization tasks.,Anyone with an Interest in Numerical Computing: Regardless of professional background, who wants to enhance their skills in numerical computing and data manipulation using Python's NumPy library.

Screenshots


rapidgator.net:
Citar
https://rapidgator.net/file/e377f92ce4f6f713ef0046c2a8f11815/iirzc.Mastering.Numpy.For.Machine.Learning.2024.part1.rar.html
https://rapidgator.net/file/a7d751f5a667137fd1b061fb84354e9b/iirzc.Mastering.Numpy.For.Machine.Learning.2024.part2.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/075982334C2D7F1/iirzc.Mastering.Numpy.For.Machine.Learning.2024.part1.rar
https://nitroflare.com/view/505577E1BDB7BFA/iirzc.Mastering.Numpy.For.Machine.Learning.2024.part2.rar