* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  classic k7y8j0
    Hoje às 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37

Autor Tópico: Advance Python | Python for Datascience  (Lida 45 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115977
  • Karma: +0/-0
Advance Python | Python for Datascience
« em: 02 de Novembro de 2023, 07:36 »


Advance Python | Python for Datascience
Published 11/2023
Created by Selfcode Academy
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 24 Lectures ( 9h 44m ) | Size: 4 GB
A Python-Based Datascience Roadmap

What you'll learn
The course is designed to provide students with a strong foundation in advanced Python programming, data analysis, and machine learning.
Students will learn advanced programming concepts, including list comprehensions, file I/O operations, exception handling, and lot more advance python concepts.
Data manipulation and analysis using the NumPy and Pandas libraries, covering data cleaning, preprocessing, and transformation techniques.
Data visualization using Matplotlib, Seaborn, and Plotly for creating informative and visually appealing plots and charts.
Implementation and evaluation of various machine learning algorithms, such as supervised and unsupervised learning, using the Scikit-learn library.
Optional exploration of advanced topics like natural language processing, web scraping, time series analysis, and recommender systems for a more comprehensive u
Requirements
Students should have understanding of fundamental Python concepts, including variables, data types, loops, and functions.
A genuine interest in working with data, conducting data analysis, and implementing machine learning models is crucial to fully benefit from the course content.
A foundational knowledge of basic mathematical concepts, such as algebra and statistics, will be helpful for comprehending certain aspects of data analysis, machine learning, and numerical computing.
Description
Ready to advance your Python skills? Our easy-to-follow Advanced Python course is tailored for learners of all levels, This course is crafted for students aspiring to master Python and dedicated to pursuing careers as data analysts or data scientists. It comprehensively covers advanced Python concepts, providing students with a strong foundation in programming and data analysis, focusing on data analysis, visualization, and machine learning. Discover the power of Python in handling complex data, creating engaging visuals, and building intelligent machine-learning models.Course Curriculum: --Introduction to PythonPython syntax and basic programming conceptsVariables, data types, and operatorsControl flow (conditionals and loops)Functions and modulesAdvanced Python ConceptsList comprehensions and generatorsFile I/O operationsException handlingObject-oriented programming (classes, objects, inheritance)Decorators and metaclassesNumPy (expand on the basic library coverage)Arrays and array operationsArray indexing and slicingBroadcasting and vectorizationMathematical functions and linear algebraArray manipulation and reshapingPandas (expand on the basic library coverage)Series and DataFrame data structuresData cleaning and preprocessing techniquesData manipulation and transformationHandling missing data and outliersMerging, joining, and reshaping datasetsData VisualizationAdvanced Matplotlib techniquesSeaborn for statistical data visualizationPlotly and interactive visualizationsCustomizing plots and aestheticsVisualizing geospatial dataMachine Learning with Scikit-learn (expand on the basic library coverage)Supervised learning algorithms (linear regression, logistic regression, support vector machines, decision trees, random forests, etc.)Unsupervised learning algorithms (clustering, dimensionality reduction)Model evaluation and validation techniquesHyperparameter tuning and model selectionFeature selection and feature engineeringDeep Learning with TensorFlow or PyTorch (optional, if time permits)Introduction to neural networks and deep learningBuilding and training neural networksConvolutional neural networks for image classificationRecurrent neural networks for sequence dataTransfer learning and pre-trained modelsAdditional Topics (optional, based on available time and student interests)Natural Language Processing (NLP) with NLTK or SpaCyWeb scraping and data collectionTime series analysis and forecastingRecommender systemsIntroduction to Big Data and distributed computing with PySparkCase Studies and ProjectsApply the learned concepts and libraries to real-world datasetsWork on data science projects with varying complexitiesPractice problem-solving and critical thinkingWith hands-on practice and expert guidance, you'll be prepared for rewarding opportunities in data science and analytics. **   Join us now to become a proficient Python data analyst and unlock a world of possibilities!   **
Who this course is for
Students interested in exploring data analysis, cleaning, and preprocessing techniques using Python will find this course helpful in understanding how to work w
For students keen on expanding their knowledge beyond basic programming, this course delves into advanced Python concepts, object-oriented programming, and more
Students those who wants to learn advanced Python concepts, and are intrested towards the field of datascience
Students and professionals in the field of machine learning and artificial intelligence looking to strengthen their understanding of Python for implementing and
Data analysts and data scientists seeking to leverage Python for advanced data manipulation, analysis, and visualization tasks.
Intermediate Python developers aiming to enhance their skills and delve deeper into advanced programming concepts.
Software engineers interested in expanding their knowledge of Python for various applications, including web development, data processing, and automation.

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/920af047d9959bb0ccd057ba99430387/kmmuw.Advance.Python..Python.for.Datascience.part1.rar.html
https://rapidgator.net/file/d0f00939cb6b1772a1f602ea7c7678f9/kmmuw.Advance.Python..Python.for.Datascience.part2.rar.html
https://rapidgator.net/file/3d74547da64d3f7aa7763463bd4e9ff0/kmmuw.Advance.Python..Python.for.Datascience.part3.rar.html
https://rapidgator.net/file/9ddc8abd21befbd0bf55af506fe69ee1/kmmuw.Advance.Python..Python.for.Datascience.part4.rar.html
https://rapidgator.net/file/bd0c7ee4f5777bddff9522c7da53d25c/kmmuw.Advance.Python..Python.for.Datascience.part5.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/743b1bcCdAB6C3Aa/kmmuw.Advance.Python..Python.for.Datascience.part1.rar
https://uploadgig.com/file/download/e5269FAD9c59a478/kmmuw.Advance.Python..Python.for.Datascience.part2.rar
https://uploadgig.com/file/download/8e2E76Bba6088eFc/kmmuw.Advance.Python..Python.for.Datascience.part3.rar
https://uploadgig.com/file/download/8860f5E2Bc667af0/kmmuw.Advance.Python..Python.for.Datascience.part4.rar
https://uploadgig.com/file/download/6ae54a0168eE0E59/kmmuw.Advance.Python..Python.for.Datascience.part5.rar

nitroflare.com:
Citar
https://nitroflare.com/view/D3AB9148BF7C6D3/kmmuw.Advance.Python..Python.for.Datascience.part1.rar
https://nitroflare.com/view/A468D67521BA54D/kmmuw.Advance.Python..Python.for.Datascience.part2.rar
https://nitroflare.com/view/A04E926BC144F49/kmmuw.Advance.Python..Python.for.Datascience.part3.rar
https://nitroflare.com/view/DF20B9AA78DBDBB/kmmuw.Advance.Python..Python.for.Datascience.part4.rar
https://nitroflare.com/view/5FFC47F34364FE5/kmmuw.Advance.Python..Python.for.Datascience.part5.rar