* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Logistic Regression using SPSS  (Lida 101 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Logistic Regression using SPSS
« em: 31 de Outubro de 2023, 03:09 »


Logistic Regression using SPSS
Published 10/2023
Created by EDUCBA Bridging the Gap
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 14 Lectures ( 2h 2m ) | Size: 988 MB
Learn about a comprehensive framework of the right skills that you can master to be a successful Data Analyst

What you'll learn
course aims to provide and enhance predictive modelling skills across business sectors
The course picks theoretical and practical datasets for predictive analysis
Observations, interpretations, predictions and conclusions are explained then and there on the examples as we proceed through the training
The course also emphasizes on the higher order regression models such as quadratic and polynomial regressions
Requirements
Prior knowledge of Quantitative Methods, MS Office and Paint is desired.
Description
Logistic regression in SPSS is defined as the binary classification problem in the field of statistic measuring. The difference between a dependent and independent variable with the guide of logistic function by estimating the different occurrence of the probabilities, i.e., it is used to predict the outcome of the independent variable (1 or 0 either yes/no) as it is an extension of a linear regression which is used to predict the continuous output variables.Logistic regression is a technique used in the field of statistics measuring the difference between a dependent and independent variable with the guide of logistic function by estimating the different occurrence of probabilities. They can be either binomial (has yes or No outcome) or multinomial (Fair vs poor very poor). The probability values lie between 0 and 1, and the variable should be positive (<1).It targets the dependent variable and has the following steps to follow:n- no. of fixed trials on a taken dataset.With two outcomes trial.The outcome of the probability should be independent of each other.The probability of success and failures must be the same at each trial.Predictive modelling course aims to provide and enhance predictive modelling skills across business sectors/domains. Quantitative methods and predictive modelling concepts could be extensively used in understanding the current customer behavior, financial markets movements, and studying tests and effects in medicine and in pharma sectors after drugs are administered. The course picks theoretical and practical datasets for predictive analysis. Implementations are done using SPSS software. Observations, interpretations, predictions and conclusions are explained then and there on the examples as we proceed through the training. The course also emphasizes on the higher order regression models such as quadratic and polynomial regressions which aren't covered in other online courses Essential skillsets - Prior knowledge of Quantitative methods and MS Office, Paint Desired skillsets -- Understanding of Data Analysis and VBA toolpack in MS Excel will be usefulThe course works across multiple software packages such as SPSS, MS Office, PDF writers, and Paint.Regression modelling forms the core of Predictive modelling course. The core objective of this course is to provide skills in understand the regression model and interpreting it for predictions. The associated parameters of the regression model will be interpreted and tested for significance and test the goodness of fit of the given regression model.Through this course we are going to understand:Interpretation of regression attributes such as R-Squared (correlation coefficient), t and p valuesm (slope) and c (intercept),Dependent variables (Y), independent (A1, A2, A3..) variables, and Binary/Dummy B1, B2, B3 ...) variablesExamining significance/relevance of A, B variables for regression model (equation) goodness of fitPredicting Y-variable upon varying values of A, B variablesUnderstanding Multi-Collinearity and its disadvantagesImplementation on sample datasets using SPSS and output simulation in MS Excel
Who this course is for
Data Engineers, Analysts, Architects, Software Engineers, IT operations, Technical managers

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/7dcbb2d857570f43881fda8f73986076/cywnb.Logistic.Regression.using.SPSS.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/e59ae75Fb4c460ce/cywnb.Logistic.Regression.using.SPSS.rar

nitroflare.com:
Citar
https://nitroflare.com/view/B345CF08B18E921/cywnb.Logistic.Regression.using.SPSS.rar