* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Abril de 2025, 10:38
  • cereal killa:
    19 de Abril de 2025, 21:17
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    19 de Abril de 2025, 18:19
  • j.s.:
    19 de Abril de 2025, 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    19 de Abril de 2025, 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10

Autor Tópico: The Machine Learning Series in Python: Level 1  (Lida 69 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 119085
  • Karma: +0/-0
The Machine Learning Series in Python: Level 1
« em: 13 de Novembro de 2022, 15:19 »

The Machine Learning Series in Python: Level 1
Published 11/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 45 lectures (3h 22m) | Size: 1.07 GB
Build a solid foundation in Machine Learning: Linear Regression, Logistic Regression and K-Means Clustering in Python

What you'll learn
Machine Learning
The Machine Learning Process
Regression
Ordinary Least Squares
Simple Linear Regression
Multiple Linear Regression
R-Squared
Adjusted R-Squared
Classification
Maximum Likelihood
Feature Scaling
Confusion Matrix
Accuracy
Clustering
K-Means Clustering
The Elbow Method
K-Means++
Build Machine Learning models in Python
Make Predictions
Requirements
Every single line of code will be fully explained so there are no prerequisites for coding skills
This is a foundational course, so no prior knowledge of Data Science is required
Some high-school level mathematics knowledge is recommended but not required
We use Google Colab for coding in Python which is very intuitive, but you can also use Jupyter or another IDE
Description
In this course you will master the foundations of Machine Learning and practice building ML models with real-world case studies. We will start from scratch and explain:What Machine Learning isThe Machine Learning Process of how to build a ML modelRegression: Predict a continuous numberSimple Linear RegressionOrdinary Least SquaresMultiple Linear RegressionR-SquaredAdjusted R-SquaredClassification: Predict a Category / ClassLogistic RegressionMaximum LikelihoodFeature ScalingConfusion MatrixAccuracyClustering: Predict / Identify a PatternK-Means ClusteringThe Elbow Method We will also do the following the three following practical activities:Real-World Case Study: Build a Multiple Linear Regression modelReal-World Case Study: Build a Logistic Regression modelReal-World Case Study: Build a K-Means Clustering modelThe Course Objectives are the following:- Get the right basics of how machine learning works and how models are built.- Understand what is regression.- Understand the theory behind the linear regression model.- Know how to build, train and evaluate a linear regression model for a real-world case study.- Understand what is classification.- Understand the theory behind the logistic regression model.- Understand and apply feature scaling including both normalization and standardization.- Know how to build, train and evaluate a logistic regression model for a real-world case study.- Understand what is clustering.- Understand the theory behind the k-means clustering model.- Know how to build, train and evaluate the k-means clustering model for a real-world case study.
Who this course is for
Anyone interested in Data Science
Anyone who wants to become a Data Scientist
Anyone interested in Machine Learning
Anyone who wants to become a ML or AI engineer
Data Science professionals
Machine Learning professionals
Anyone who wants to add Machine Learning to their CV or career toolkit

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/43d9ed0f49d2a03b3b5d33f1a95eb2a6/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part1.rar.html
https://rapidgator.net/file/7ab7e2ae88447c30469d7610e53f4fa2/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part2.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/0B365510988fB35b/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part1.rar
https://uploadgig.com/file/download/cc0f89099559291B/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part2.rar

nitroflare.com:
Citar
https://nitroflare.com/view/F55DEA8BBD5C4CE/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part1.rar
https://nitroflare.com/view/416197AE690BB51/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part2.rar

1dl.net:
Citar
https://1dl.net/63i2hekn9rgg/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part1.rar.html
https://1dl.net/aiba95efxv0m/vyjjk.The.Machine.Learning.Series.in.Python.Level.1.part2.rar.html