* Cantinho Satkeys

Refresh History
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31

Autor Tópico: Data Science & Machine Learning: Naive Bayes in Python  (Lida 36 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115840
  • Karma: +0/-0
Data Science & Machine Learning: Naive Bayes in Python
« em: 11 de Novembro de 2022, 15:41 »

Published 11/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 32 lectures (5h) | Size: 2.2 GB
Master a crucial artificial intelligence algorithm and skyrocket your Python programming skills

What you'll learn
Apply Naive Bayes to image classification (Computer Vision)
Apply Naive Bayes to text classification (NLP)
Apply Naive Bayes to Disease Prediction, Genomics, and Financial Analysis
Understand Naive Bayes concepts and algorithm
Implement multiple Naive Bayes models from scratch
Requirements
Decent Python programming skills
Experience with Numpy, Matplotlib, and Pandas (we'll be using these)
For advanced portions: know probability
Description
In this self-paced course, you will learn how to apply Naive Bayes to many real-world datasets in a wide variety of areas, such as
computer vision
natural language processing
financial analysis
healthcare
genomics
Why should you take this course? Naive Bayes is one of the fundamental algorithms in machine learning, data science, and artificial intelligence. No practitioner is complete without mastering it.
This course is designed to be appropriate for all levels of students, whether you are beginner, intermediate, or advanced. You'll learn both the intuition for how Naive Bayes works and how to apply it effectively while accounting for the unique characteristics of the Naive Bayes algorithm. You'll learn about when and why to use the different versions of Naive Bayes included in Scikit-Learn, including GaussianNB, BernoulliNB, and MultinomialNB.
In the advanced section of the course, you will learn about how Naive Bayes really works under the hood. You will also learn how to implement several variants of Naive Bayes from scratch, including Gaussian Naive Bayes, Bernoulli Naive Bayes, and Multinomial Naive Bayes. The advanced section will require knowledge of probability, so be prepared!
Thank you for reading and I hope to see you soon!
Suggested Prerequisites
Decent Python programming skill
Comfortable with data science libraries like Numpy and Matplotlib
For the advanced section, probability knowledge is required
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?
Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including my free course)
UNIQUE FEATURES
Every line of code explained in detail - email me any time if you disagree
Less than 24 hour response time on Q&A on average
Not afraid of university-level math - get important details about algorithms that other courses leave out
Who this course is for
Beginner Python developers curious about data science and machine learning
Students and professionals interested in machine learning fundamentals

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/4231e132f5ea869554aee9fea8bea9ee/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part1.rar.html
https://rapidgator.net/file/720f8c204b3815e2e8983cdb3b00126b/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part2.rar.html
https://rapidgator.net/file/76d8359d628989a7acd2baf933592d65/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part3.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/2720328495edFd57/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part1.rar
https://uploadgig.com/file/download/eDe6B50cE9b90a5b/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part2.rar
https://uploadgig.com/file/download/1bFD532b38F5Acf0/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part3.rar

nitroflare.com:
Citar
https://nitroflare.com/view/4E2107EC512FB56/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part1.rar
https://nitroflare.com/view/D3DD274D673E3BA/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part2.rar
https://nitroflare.com/view/0007C0995F75A87/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part3.rar

1dl.net:
Citar
https://1dl.net/fidu4wei5yt8/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part1.rar.html
https://1dl.net/rhepwo256vgi/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part2.rar.html
https://1dl.net/lp3mf4blb6lb/cgyfz.Data.Science..Machine.Learning.Naive.Bayes.in.Python.part3.rar.html