* Cantinho Satkeys

Refresh History
  • j.s.: tenham um excelente fim de semana  49E09B4F
    Hoje às 16:19
  • j.s.: dgtgtr a todos  4tj97u<z
    Hoje às 16:18
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    07 de Novembro de 2025, 12:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    07 de Novembro de 2025, 03:38
  • j.s.: try65hytr a todos
    06 de Novembro de 2025, 19:11
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34

Autor Tópico: Deep Learning for NLP - Part 1  (Lida 117 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126356
  • Karma: +0/-0
Deep Learning for NLP - Part 1
« em: 13 de Agosto de 2021, 14:27 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.14 GB | Duration: 3h 16m

What you'll learn
Deep Learning for Natural Language Processing
Multi-Layered Perceptrons (MLPs)
Word embeddings
Recurrent Models: RNNs, LSTMs, GRUs and variants
DL for NLP
Requirements
Basics of machine learning
Description
This course is a part of "Deep Learning for NLP" Series. In this course, I will introduce basic deep learning concepts like multi-layered perceptrons, word embeddings and recurrent neural networks. These concepts form the base for good understanding of advanced deep learning models for Natural Language Processing.

The course consists of three sections.

In the first section, I will talk about Basic concepts in artificial neural networks like activation functions (like ramp, step, sigmoid, tanh, relu, leaky relu), integration functions, perceptron and back-propagation algorithms. I also talk about what is deep learning, how is it related to machine learning and artificial intelligence? Finally, I will talk about how to handle overfittting in neural network training using methods like regularization, early stopping and dropouts.

In the second section, I will talk about various kinds of word embedding methods. I will start with basic methods like Onehot encoding and Singular Value Decomposition (SVD). Next I will talk about the popular word2vec model including both the CBOW and Skipgram methods. Further, I will talk about multiple methods to make the softmax computation efficient. This will be followed by discussion on GloVe. As special word embedding topics I will cover Cross-lingual embeddings. Finally, I will also talk about sub-word embeddings like BPE (Byte Pair Encoding), wordPiece, SentencePiece which are popularly used for Transformer based models.

In the third session, I will start with general discussion on ngram models. Next I will briefly introduce the neural network language model (NNLM). Then we will spend quite some time understanding how RNNs work. We will also talk about RNN variants like BiRNNs, Deep BiRNNs. Then I will discuss the vanishing and exploding gradients problem. This will be followed by details of the LSTMs and GRUs architectures.

Who this course is for:
Beginners in deep learning
Python developers interested in data science concepts

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction