* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Anomaly Detection  (Lida 59 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115767
  • Karma: +0/-0
Anomaly Detection
« em: 06 de Julho de 2021, 13:35 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 1.20 GB | Duration: 4h 29m

What you'll learn
What is an anomaly?
What are the areas where anomaly detection can be applied?
What are the three types of anomaly detection techniques?
How to analyze time based data for anomalies?
How to use supervised learning to identify anomalies?
How to apply unsupervised learning algorithms like DBSCAN and Isolation Forest to detect anomalies?
How to analyze images and identify anomalies among them?
Requirements
None.
Description
An anomaly is a data point that doesn't fit or gel with other data points. Detecting this anomaly point or a set of anomaly points in a process area can be highly beneficial as it can point to potential issues affecting the organization. In fact, anomaly detection has been the most widely adopted area with in the artificial intelligence - machine learning space in the world of business. As a practitioner of AI, I always ask my clients to start off with anomaly detection in their AI journey because anomaly detection can be applied even when data availability is limited.

Anomaly detection can be applied in the following areas:

· Predictive maintenance in the manufacturing industry

· Fraud detection across industries

· Surveillance activities across industries

· Customer Service and retail industries

. Sales

The following will be covered in this program:

· The three types of anomaly detection - time based, non time based and image. Of these, image anomaly is a new frontier for AI. Just like we analyze the numbers, we can now analyze images and identify anomalies.

· Machine learning and deep learning concepts

· Supervised and unsupervised algorithms (DBSCAN, Isolation Forest)

. Image anomaly detection using deep learning techniques

· Scenarios where anomaly detection can be applied

· Python is covered in great detail to assist those who are new to python or want a refresher on any of the python topics.

Anomaly detection is one area that can be applied in any type of business and hence organizations embarking on AI journey normally first explore anomaly detection area. So, as professionals and students, you can also explore this wonderful field!

Who this course is for:
Machine and Deep Learning enthusiasts
Data Science/Analytics Managers & Heads
Beginners in Data Science

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction