* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Recommendation Engine Bootcamp with 3 Capstone Projects  (Lida 176 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Recommendation Engine Bootcamp with 3 Capstone Projects
« em: 24 de Junho de 2021, 07:34 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 59 lectures (3h 1m) | Size: 2.77 GB
Master recommendation systems Industry Projects using using modern recommendation techniques and methodologies

What you'll learn:
Learn about the different types of Recommender Systems
Learn about Content based recommendation system
Learn about Collaborative based filtering
Learn about Singular Value Decomposition
Learn recommending movies, books using the recommendation system
Learn about Surprise Library for recommendation systems

Requirements
Good knowledge of Python programming
Knowledge of Probability and Statistics concepts
Knowledge of Machine Learning Algorithms

Description
Welcome to the best online course on Recommendation Engine.

Master various recommendation engines including Content based filtering, collaborative filtering, Singular value decomposition.

Recommender systems aim to predict users' interests and recommend product items that quite likely are interesting for them.

A recommendation engine is a type of data filtering tool using machine learning algorithms to recommend the most relevant items to a particular user or customer.

It operates on the principle of finding patterns in consumer behavior data, which can be collected implicitly or explicitly.

This course gives you a thorough understanding of the Recommendation systems.

In this course, you will cover

Use cases of recommender systems.

Content-based filtering.

Filtering movies based on genres.

User-based collaborative filtering.

Item-based collaborative filtering.

Singular value decomposition using Surprise library.

Not only this, you will also work on three very exciting projects.

You will learn to create a movie recommendation engine as well as a book recommendation engine and Open job analyzer system.

It will be fun working on such exciting projects.

You will see how easy it is to recommend new books or movies based on the user's past preferences.

I guarantee you will love this course.

All the resources used in this course will be shared with you.

Who this course is for
Data Analysts
Data Scientists


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction