* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Forecasting Models and Time Series for Business in Python  (Lida 147 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Forecasting Models and Time Series for Business in Python
« em: 17 de Junho de 2021, 10:55 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 123 lectures (8h 11m) | Size: 2.8 GB
Learn Holt-Winters, Arima, Sarimax, Tensorflow Time Series, Facebook Prophet, XGBoost for Demand Planning & Forecasting

What you'll learn:
Holt-Winters
TBATS
SARIMAX
Facebook Prophet
Tensorflow Structural Time Series
XGBoost
Time Series Analysis
Demand Planning and Forecasting

Requirements
Basic Statistics: Linear regression, p-value
Basic Python desirable

Description
Welcome to the most exciting online course about Forecasting Models in Python. I will show everything you need to know to understand the now and predict the future.

Forecasting is always sexy - knowing what will happen usually drops jaws and earns admiration. On top, it is fundamental in the business world. Companies always provide Revenue growth and EBIT estimates, which are based on forecasts. Who is doing them? Well, that could be you!

WHY SHOULD YOU ENROLL IN THIS COURSE?

YOU WILL LEARN THE INTUITION BEHIND THE MODELS WITHOUT FOCUSING TOO MUCH ON THE MATH

It is fundamental that you know why a model makes sense and the underlying assumptions behind it. I will explain to you each model using words, graphs, and metaphors, leaving math and the Greek alphabet to a minimum.

THOROUGH COURSE STRUCTURE OF MOST IMPACTFUL ECONOMETRIC TECHNIQUES

The techniques in this course are the ones I believe will be most impactful, up to date, and sought after:

Holt-Winters

TBATS

SARIMAX

TensorFlow Structural Time Series

Facebook Prophet

Facebook Prophet + XGBoost

Ensemble approach

WE CODE TOGETHER LINE BY LINE

I will guide you through every step of the way. I will also explain all parameters and functions that you need to use, step by step.

THE FINAL REASON IS THAT YOU PRACTICE, PRACTICE, PRACTICE.

For each algorithm, there is a challenge. This means that each technique has 2 case studies. The goal is that you apply immediately what you have learned. I give you a dataset and a list of actions you need to take to solve it. I think it is the best way to really cement all the techniques in you.

Did I spike your interest? Join me and learn how to predict the future!

Who this course is for
Professionals looking to learn about Demand Forecasting and Time Series


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction