* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Data Science - Data Mining Unsupervised Learning R & Python  (Lida 73 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115675
  • Karma: +0/-0
Data Science - Data Mining Unsupervised Learning R & Python
« em: 20 de Março de 2021, 11:27 »


Created by 360DigiTMG Elearning | Published 2/2021
Duration: 1h55m | 4 sections | 10 lectures | Video: 1280x720, 44 KHz | 939 MB
Genre: eLearning | Language: English + Sub

Become a Practical Data Scientist

What you'll learn
Students will learn the Data Science Primer and Plethora of Data Mining Unsupervised Learning Techniques

Requirements
Basic Programming, Mathematics and Analytics Mindset is needed
Description
Learners will understand about Data Science- Data Mining Unsupervised Learning in developing & analyzing Data Science projects or Artificial Intelligence projects. Data mining unsupervised techniques are used as EDA techniques to derive insights from the business data.This course includes practical approach and discussed aboutClustering segmentation, Dimension reduction, Association rules, Recommended system, Network Analytics, Text mining etc,.
Clustering segmentation : In this first module of unsupervised learning, get introduced to clustering algorithms. Learn about different approaches for data segregation to create homogeneous groups of data. Hierarchical clustering, K means clustering are most commonly used clustering algorithms. Understand the different mathematical approaches to perform data segregation. Also learn about variations in K-means clustering like K-medoids, K-mode techniques, learn to handle large data sets using CLARA technique.
Dimension Reduction (PCA) / Factor Analysis Description: Learn to handle high dimensional data. The performance will be hit when the data has a high number of dimensions and machine learning techniques training becomes very complex, as part of this module you will learn to apply data reduction techniques without any variable deletion. Learn the advantages of dimensional reduction techniques. Also, learn about yet another technique called Factor Analysis.
Association rules : Learn to measure the relationship between entities. Bundle offers are defined based on this measure of dependency between products. Understand the metrics Support, Confidence and Lift used to define the rules with the help of Apriori algorithm. Learn pros and cons of each of the metrics used in Association rules
Recommended system : Personalized recommendations made in e-commerce are based on all the previous transactions made. Learn the science of making these recommendations using measuring similarity between customers. The various methods applied for collaborative filtering, their pros and cons, SVD method used for recommendations of movies by Netflix will be discussed as part of this module.
Network Analytics : Study of a network with quantifiable values is known as network analytics. The vertex and edge are the node and connection of a network, learn about the statistics used to calculate the value of each node in the network. You will also learn about the google page ranking algorithm as part of this module.
Who this course is for:Beginners to Intermediate

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction