* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Writing CUDA kernels for interpolation  (Lida 131 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115657
  • Karma: +0/-0
Writing CUDA kernels for interpolation
« em: 12 de Março de 2021, 17:03 »

Writing CUDA kernels for interpolation
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 6 lectures (1h 12m) | Size: 281.3 MB
Using CUDA textures to interpolate images

What you'll learn:
Nearest-neighbor interpolation of a PGM image
Writing CUDA kernels
Texture filtering
Bilinear interpolation of a PGM image
Texture loopkup
Bicubic interpolation of a PGM image
Interpolation in CUDA

Requirements
Fundamentals of C/C++ and CUDA programming
Basic elements of calculus, especially function approximation

Description
In real-life applications, we want big images: when we watch a video clip on a PC, we like to see it in the full-screen mode. We want high-quality images: if a block of pixels gets damaged during the transmission, we want to repair it. We want cool images: by digital image manipulation, fancy artistic effects as seen in movies can be rendered. We want fast processing, especially when the images are big and many. To process even faster, we want that the various image pixels are processed in parallel.

CUDA (Compute Unified Device Architecture)                                                                                                                                                                                                       is a hardware architecture and programming model introduced by NVIDIA for the parallel processing of Graphics Processing Units (GPUs). It represents by now an assessed tool for parallel programming and permits low-level programming capable of achieving very high performance by directly and properly managing the thread work.

In this course, the direct use of CUDA for a simple yet common problem like image interpolation is illustrated. This will enable the attendee to get familiar with the functions running on the GPU, namely, the kernel functions. Being interpolation very common in technical and scientific applications, the development of parallel interpolation codes permits having a tool that can be reused when needed.

What will you learn in this course?

Nearest-neighbor interpolation

Linear and bilinear interpolation

CUDA texture memory

Texture filtering

Nearest-neighbor and linear interpolations of a PGM image

Cubic B-spline interpolation

Bicubic B-spline interpolation of a PGM image

Texture lookup

Catmull-Rom interpolation

Different common interpolation techniques for PGM images will be presented and implemented with customized CUDA kernels, also using CUDA texture memory.

Requirements

You should have basic knowledge of the fundamentals of C/C++ and CUDA programming

You should have basic knowledge of elements of calculus, especially function approximation

Who this course is for
Engineers, Physicists, Mathematicians, Economists
Students, Graduates, PhD

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction