* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Natural Language Processing in R for Beginners  (Lida 96 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115675
  • Karma: +0/-0
Natural Language Processing in R for Beginners
« em: 06 de Março de 2021, 05:11 »

Natural Language Processing in R for Beginners
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 70 lectures (3h 21m) | Size: 1.79 GB
Learn NLP in R with our easy to understand videos and free textbook!

What you'll learn:
Access Text Data from APIs with jsonlite
Scrape the Web Using rvest
Import Data from Twitter and Wikipedia
Find Patterns using Regex
Manipulate and Clean Data Using tidytext and tm
Measure Emotion with Sentiment Analysis
Surface Meaning with Topic Modeling
Provide Context with Parts of Speech Tagging and Named Entity Recognition
Quantify Relationships with Word Embeddings

Requirements
Basic Understanding of R
Desire to Learn Natural Language Processing
Bonus: Knowledge of the tidyverse

Description
Working with text data does not need to be difficult!

Follow along as we explain complex topics for a beginner audience. By the end of this course, you will be able to read in data from websites like twitter and wikipedia,                                                                                                                                                                                                         clean it, and perform analysis.

We keep it easy.

This course is designed for a data analyst who is familiar with the R language but has absolutely no background in natural language processing or even statistics in general.

We break our course into three main sections: text mining, preparing and exploring text data, and analyzing text data.

Text Mining

Like with every other form of analytics, before any real work can be done, the data must exist (obviously) and be in a working format.

What's Covered: APIs, Twitter Data, Webscraping, Wikipedia Data

Preparing and Exploring Text Data

Once the data has been properly gathered and mined, it needs to be put into a usable format. The following tutorials cover how to clean and explore text data.

What's Covered: Regex, stringr package, tidytext package, tm package

Analyzing Text Data

After exploratory data analysis has been performed, we can do further analysis of the relationships and meaning in text.

What's Covered: TF-IDF, Sentiment Analysis, Topic Modeling, Parts of Speech Tagging, Name Entity Recognition, Word Embeddings

So dive in and see what insights are hiding in your text data!

Who this course is for
Data scientists looking to branch out to NLP
Business analysts who need to get insight from text data

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction