* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Gaussian Process Regression for Bayesian Machine Learning  (Lida 313 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126273
  • Karma: +0/-0
Gaussian Process Regression for Bayesian Machine Learning
« em: 01 de Junho de 2020, 19:12 »

Gaussian Process Regression for Bayesian Machine Learning
MP4 | Video: h264, 1280x720 | Audio: AAC, 48 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 11 lectures (54 mins) | Size: 262 MB
Acquire a powerful probabilistic modelling tool for modern machine learning, with fundamentals and application in Python

What you'll learn

The mathematics behind an algorithm such as the scikit-learn GaussianProcessRegressor algorithm
The benefits of Gaussian process regression
Examples of Gaussian process regression in action
The most important kernels needed for Gaussian process regression
How to apply Gaussian process regression in Python using scikit-learn

Requirements

A basic understanding of linear algebra
Basic experience with coding

Description

Probabilistic modelling, which falls under the Bayesian paradigm, is gaining popularity world-wide. Its powerful capabilities, such as giving a reliable estimation of its own uncertainty, makes Gaussian process regression a must-have skill for any data scientist. Gaussian process regression is especially powerful when applied in the fields of data science, financial analysis, engineering and geostatistics.

This course covers the fundamental mathematical concepts needed by the modern data scientist to confidently apply Gaussian process regression. The course also covers the implementation of Gaussian process regression in Python.

Who this course is for:

Data scientists, engineers and financial analysts looking to up their data analysis game
Anybody interested in probabilistic modelling and Bayesian statistics

Screenshots

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction