* Cantinho Satkeys

Refresh History
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    Hoje às 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    Hoje às 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28

Autor Tópico: Practical Machine Learning by Example in Python  (Lida 209 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115513
  • Karma: +0/-0
Practical Machine Learning by Example in Python
« em: 20 de Abril de 2020, 15:10 »

Practical Machine Learning by Example in Python
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 2.57 GB
Genre: eLearning Video | Duration: 105 lectures (7 hour, 35 mins) | Language: English

Learn modern machine learning, deep learning, and data science skills

What you'll learn

    Develop complete machine learning/deep learning solutions in Python
    Write and test Python code interactively using Jupyter notebooks
    Build, train, and test deep learning models using the popular Tensorflow 2 and Keras APIs
    Neural network fundamentals by building models from the ground up using only basic Python
    Manipulate multidimensional data using NumPy
    Load and transform structured data using Pandas
    Build high quality, eye catching visualizations with MatDescriptionlib
    Reduce training time using free Google Colab GPU instances in the cloud
    Recognize images using Convolutional Neural Networks (CNNs)
    Make recommendations using collaborative filtering
    Detect fraud using autoencoders
    Improve model accuracy and eliminate overfitting

Requirements

    Basic software development skills
    Basic high school math, such as trigonometry and algebra

Description

Are you a developer interested in becoming a machine learning engineer or data scientist? Do you want to be proficient in the rapidly growing field of artificial intelligence? One of the fastest and easiest ways to learn these skills is by working through practical hands-on examples.

LinkedIn released it's annual "Emerging Jobs" list, which ranks the fastest growing job categories. The top role is Artificial Intelligence Specialist, which is any role related to machine learning. Hiring for this role has grown 74% in the past few years!

In this course, you will work through several practical, machine learning examples, such as image recognition, sentiment analysis, fraud detection, and more. In the process, you will learn how to use modern frameworks, such as Tensorflow 2/Keras, NumPy, Pandas, and MatDescriptionlib. You will also learn how use powerful and free development environments in the cloud, like Google Colab.

Each example is independent and follows a consistent structure, so you can work through examples in any order.  In each example, you will learn:

    The nature of the problem

    How to analyze and visualize data

    How to choose a suitable model

    How to prepare data for training and testing

    How to build, test, and improve a machine learning model

    Answers to common questions

    What to do next

Of course, there are some required foundations you will need for each example. Foundation sections are presented as needed. You can learn what interests you, in the order you want to learn it, on your own schedule.

January 2020 updates:

    New mathematics and machine learning foundation section including

        Logistic regression, loss and cost functions, gradient descent, and backpropagation

    All examples updated to use Tensorflow 2 (Tensorflow 1 examples are available also)

    Jupyter note introduction

    Python quick start

    Basic linear algebra

March 2020 updates:

    A sentiment and natural language processing section

        This includes a modern BERT classification model with surprisingly high accuracy

Why choose me as your instructor?

    Practical experience. I actively develop real world machine learning systems. I bring that experience to each course.

    Teaching experience. I've been writing and teaching for over 20 years.

    Commitment to quality. I am constantly updating my courses with improvements and new material.

    Ongoing support. Ask me anything! I'm here to help. I answer every question or concern promptly.

Who this course is for:

    Anyone interesting in developing machine learning and deep learning skills
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction