* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    Hoje às 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    Hoje às 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09

Autor Tópico: Causal Data Science with Directed Acyclic Graphs  (Lida 224 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115395
  • Karma: +0/-0
Causal Data Science with Directed Acyclic Graphs
« em: 16 de Abril de 2020, 18:31 »


h264, yuv420p, 1280x720 |ENGLISH, aac, 48000 Hz, 2 channels | 4h 57 mn | 2.39 GB
Created by: Paul Hünermund
Get to know the modern tools for causal inference from machine learning and AI, with many practical examples in R

What you'll learn

Causal inference in data science and machine learning
How to work with directed acylic graphs (DAG)
Newest developments in causal AI

Requirements

Basic knowledge of probability and statistcs
Basic programming skills would be an advantage

Description

This course offers an introduction into causal data science with directed acyclic graphs (DAG). DAGs combine mathematical graph theory with statistical probability concepts and provide a powerful approach to causal reasoning. Originally developed in the computer science and artificial intelligence field, they nowadays gain more and more traction also in other scientific disciplines (such as, e.g., machine learning, economics, finance, health sciences, and philosophy). DAGs allow to check the validity of causal statements based on intuitive graphical criteria, that do not require any algebra. In addition, they open up the possibility to completely automatize the causal inference task with the help of special identification algorithms. As an encompassing framework for causal thinking, DAGs are becoming an essential tool for everyone interested in data science and machine learning.

The course provides a good overview of the theoretical advances that have been made in causal data science during the last thirty year. The focus lies on practical applications of the theory and students will be put into the position to apply causal data science methods in their own work. Hands-on examples, discussed in the statistical software package R, will guide through the presented material. There are no particular prerequisites for participating. However, a good working knowledge in probability and basic programming skills are a benefit.
Who this course is for:

Data scientists
Economists
Computer Scientists
People intersted in machine learning

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction