* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Decision Trees, Random Forests, AdaBoost & XGBoost in R  (Lida 294 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126169
  • Karma: +0/-0
Decision Trees, Random Forests, AdaBoost & XGBoost in R
« em: 21 de Setembro de 2019, 11:16 »

Decision Trees, Random Forests, AdaBoost & XGBoost in R
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 4 Hours | 1.42 GB
Genre: eLearning | Language: English

This course teaches you everything you need to create a decision tree/ random forest/ XGBoost model in R and covers all the steps that you should take to solve a business problem through a decision tree.

Below are the course contents of this course on linear regression:

Section 1 - Introduction to machine learning

In this section, we will learn what machine learning means. What are the meanings or different terms associated with machine learning? You will see some examples so that you understand what machine learning is. It also contains steps involved in building a machine-learning model, not just linear models, any machine-learning model.

Section 2 - R basic

This section will help you to set up R and R studio on your system and it'll teach you how to perform some basic operations in R.

Section 3 - Pre-processing and simple decision trees

In this section you will learn what actions you need to take to prepare it for analysis; these steps are very important for creating something meaningful. we will start with the basic theory of decision trees then cover data pre-processing topics like missing value imputation, variable transformation, and test-train split. In the end, we will create and Description a simple regression decision tree.

Section 4 - Simple classification tree

In this section we will expand our knowledge of regression decision trees to classification trees, we will also learn how to create a classification tree in Python

Section 5, 6 and 7 - Ensemble technique

In this section we will start our discussion about advanced ensemble techniques for decision trees. Ensembles techniques are used to improve the stability and accuracy of machine-learning algorithms. In this course we will discuss random forest, bagging, gradient boosting, AdaBoost and XGBoost.

By the end of this course, your confidence in creating a decision tree model in R will soar. You'll have a thorough understanding of how to use decision tree modeling to create predictive models and solve business problems.

All the codes and supporting files for this course are available at -
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.
     

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction