* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    17 de Outubro de 2024, 09:09
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    16 de Outubro de 2024, 01:41

Autor Tópico: Master the Fundamentals of Complex Numbers  (Lida 251 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115290
  • Karma: +0/-0
Master the Fundamentals of Complex Numbers
« em: 23 de Junho de 2019, 18:10 »

Master the Fundamentals of Complex Numbers
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 2.64 GB
Duration: 3 hours | Genre: eLearning Video | Language: English

Master the Fundamentals of Complex Numbers

What you'll learn

    Basic Complex Number Operations
    Complex Roots of Polynomial Equations
    Argand Diagrams
    Modulus-Argument Form (Polar Form) of Complex Numbers
    Euler's Formula
    Loci of Complex Numbers (for IGCSE/College-Level)
    De Moivre's Theorem (for IB/College-Level)
    Nth Roots of a Complex Number (for IB/College-Level)
    Problem-Solving involving Complex Numbers

Requirements

    Be proficient to perform basic operations in indices, algebra, vectors (elementary level) and trigonometry

Description

Dear students,

Welcome to this course "Master the Fundamentals of Complex Numbers"!

This course is designed specially for students who are: doing college-level mathematics, taking their IGCSE/GCE A level or the IB HL Math examinations.

At the end of the course, and depending on which exams you are taking, you will learn most/all of the following:

    basic complex number operations

    complex roots of polynomial equations

    Argand diagrams

    the modulus-argument form (polar form)

    multiplication and "division" of complex numbers

    powers of complex numbers

    Euler's formula

    loci of complex numbers (for IGCSE/College-Level)

    inequalities of complex numbers (for IGCSE/College-Level)

    De Moivre's Theorem (for IB/College-Level)

    nth roots of complex numbers (for IB/College-Level)

Along the way, there will be quizzes and practice questions for you to get familiarize with complex numbers. There are also several bonus lectures which will further enhance your understanding of the topic. If you encounter any problems, please do not hesitate to contact me for more clarifications.

I hope that you will find this course useful in your academic pursuit. Enjoy the course! Cheers!

Who this course is for:

    Students who are taking college-level mathematics
    Students who are taking the IB HL Mathematics
    Students who are taking the IGCSE/GCE 'A' level Mathematics
    Students who need a good foundation in Complex Numbers for University-level modules
           

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction