* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    Hoje às 04:22
  • j.s.: try65hytr a todos  4tj97u<z
    03 de Abril de 2025, 21:00
  • migcontins: Quim Barreiros - A Esteticista (EP) 2025
    03 de Abril de 2025, 15:42
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0
    28 de Março de 2025, 03:20
  • cereal killa: try65hytr pessoal so passei para desejar uma boa noite  wwd46l0'
    27 de Março de 2025, 20:44
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    27 de Março de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    26 de Março de 2025, 20:40
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    22 de Março de 2025, 11:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    21 de Março de 2025, 03:27
  • j.s.: try65hytr a todos  49E09B4F
    20 de Março de 2025, 18:41
  • JPratas: dgtgtr Pessoal  4tj97u<z classic k7y8j0
    20 de Março de 2025, 18:22
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    19 de Março de 2025, 16:30
  • estorula: bitrecover
    18 de Março de 2025, 22:37
  • estorula: BitRecover PST Converter Wizard 10.6.2 Portable
    18 de Março de 2025, 22:33
  • j.s.: try65hytr a todos
    18 de Março de 2025, 21:02
  • Subwoofer21: obg
    17 de Março de 2025, 20:17
  • j.s.: dgtgtr a todos  49E09B4F
    16 de Março de 2025, 16:43
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    16 de Março de 2025, 10:10
  • cereal killa: ghyt74 e bom domingo  classic
    16 de Março de 2025, 08:53

Autor Tópico: Coursera - Natural Language Processing  (Lida 373 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118780
  • Karma: +0/-0
Coursera - Natural Language Processing
« em: 16 de Maio de 2019, 10:48 »

Coursera - Natural Language Processing
Dan Jurafsky, Professor of Linguistics - Stanford University

WEBRip | English | MP4 + PDF Slides | 960 x 540 | AVC ~57.4 kbps | 29.970 fps
AAC | 76 Kbps | 44.1 KHz | 1 channel | Subs: English (.srt) | 17:50:24 | 1.27 GB
Genre: eLearning Video / Linguistics
This course covers a broad range of topics in natural language processing, including word and sentence tokenization, text classification and sentiment analysis, spelling correction, information extraction, parsing, meaning extraction, and question answering, We will also introduce the underlying theory from probability, statistics, and machine learning that are crucial for the field, and cover fundamental algorithms like n-gram language modeling, naive bayes and maxent classifiers, sequence models like Hidden Markov Models, probabilistic dependency and constituent parsing, and vector-space models of meaning.

We are offering this course on Natural Language Processing free and online to students worldwide, continuing Stanford's exciting forays into large scale online instruction. Students have access to screencast lecture videos, are given quiz questions, assignments and exams, receive regular feedback on progress, and can participate in a discussion forum. Those who successfully complete the course will receive a statement of accomplishment. Taught by Professors Jurafsky and Manning, the curriculum draws from Stanford's courses in Natural Language Processing. You will need a decent internet connection for accessing course materials, but should be able to watch the videos on your smartphone.

Courses list:

Week 1 - Course Introduction
Week 1 - Basic Text Processing
Week 1 - Edit Distance
Week 2 - Language Modeling
Week 2 - Spelling Correction
Week 3 - Text Classification
Week 3 - Sentiment Analysis
Week 4 - Discriminative classifiers: Maximum Entropy classifiers
Week 4 - Named entity recognition and Maximum Entropy Sequence Models
Week 4 - Relation Extraction
Week 5 - Advanced Maximum Entropy Models
Week 5 - POS Tagging
Week 5 - Parsing Introduction
Week 5 - Instructor Chat
Week 6 - Probabilistic Parsing
Week 6 - Lexicalized Parsing
Week 6 - Dependency Parsing (Optional)
Week 7 - Information Retrieval
Week 7 - Ranked Information Retrieval
Week 8 - Semantics
Week 8 - Question Answering
Week 8 - Summarization
Week 8 - Instructor Chat II
   
        General
Complete name                            : 13 - 2 - Empirical_Data-Driven Approach to Parsing (7_11).mp4
Format                                   : MPEG-4
Format profile                           : Base Media
Codec ID                                 : isom (isom/iso2/avc1/mp41)
File size                                : 7.24 MiB
Duration                                 : 7mn 11s
Overall bit rate mode                    : Variable
Overall bit rate                         : 141 Kbps
Encoded date                             : UTC 1970-01-01 00:00:00
Tagged date                              : UTC 1970-01-01 00:00:00
Writing application                      : Lavf53.29.100

Video
ID                                       : 1
Format                                   : AVC
Format/Info                              : Advanced Video Codec
Format profile                           : High@L3.1
Format settings, CABAC                   : Yes
Format settings, ReFrames                : 4 frames
Codec ID                                 : avc1
Codec ID/Info                            : Advanced Video Coding
Duration                                 : 7mn 10s
Bit rate                                 : 57.4 Kbps
Width                                    : 960 pixels
Height                                   : 540 pixels
Display aspect ratio                     : 16:9
Frame rate mode                          : Constant
Frame rate                               : 29.970 (30000/1001) fps
Color space                              : YUV
Chroma subsampling                       : 4:2:0
Bit depth                                : 8 bits
Scan type                                : Progressive
Bits/(Pixel*Frame)                       : 0.004
Stream size                              : 2.95 MiB (41%)
Writing library                          : x264 core 120 r2120 0c7dab9
Encoding settings                        : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Encoded date                             : UTC 1970-01-01 00:00:00
Tagged date                              : UTC 1970-01-01 00:00:00

Audio
ID                                       : 2
Format                                   : AAC
Format/Info                              : Advanced Audio Codec
Format profile                           : LC
Codec ID                                 : 40
Duration                                 : 7mn 11s
Bit rate mode                            : Variable
Bit rate                                 : 76.0 Kbps
Maximum bit rate                         : 128 Kbps
Channel(s)                               : 2 channels
Channel(s)_Original                      : 1 channel
Channel positions                        : Front: C
Sampling rate                            : 44.1 KHz
Frame rate                               : 43.066 fps (1024 spf)
Compression mode                         : Lossy
Stream size                              : 3.90 MiB (54%)
Default                                  : Yes
Alternate group                          : 1
Encoded date                             : UTC 1970-01-01 00:00:00
Tagged date                              : UTC 1970-01-01 00:00:00   

Screenshots
   




Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction