* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    Hoje às 04:22
  • j.s.: try65hytr a todos  4tj97u<z
    03 de Abril de 2025, 21:00
  • migcontins: Quim Barreiros - A Esteticista (EP) 2025
    03 de Abril de 2025, 15:42
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0
    28 de Março de 2025, 03:20
  • cereal killa: try65hytr pessoal so passei para desejar uma boa noite  wwd46l0'
    27 de Março de 2025, 20:44
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    27 de Março de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    26 de Março de 2025, 20:40
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    22 de Março de 2025, 11:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    21 de Março de 2025, 03:27
  • j.s.: try65hytr a todos  49E09B4F
    20 de Março de 2025, 18:41
  • JPratas: dgtgtr Pessoal  4tj97u<z classic k7y8j0
    20 de Março de 2025, 18:22
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    19 de Março de 2025, 16:30
  • estorula: bitrecover
    18 de Março de 2025, 22:37
  • estorula: BitRecover PST Converter Wizard 10.6.2 Portable
    18 de Março de 2025, 22:33
  • j.s.: try65hytr a todos
    18 de Março de 2025, 21:02
  • Subwoofer21: obg
    17 de Março de 2025, 20:17
  • j.s.: dgtgtr a todos  49E09B4F
    16 de Março de 2025, 16:43
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    16 de Março de 2025, 10:10
  • cereal killa: ghyt74 e bom domingo  classic
    16 de Março de 2025, 08:53

Autor Tópico: Predictive maintenance meets predictive analytics  (Lida 359 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118780
  • Karma: +0/-0
Predictive maintenance meets predictive analytics
« em: 13 de Maio de 2019, 03:02 »

Predictive maintenance meets predictive analytics
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 50M | 385 MB
Genre: eLearning | Language: English

The mix of cheap sensors, fast networks, and distributed computing-the recipe for the Internet of Things-is gaining increasing attention in the manufacturing industry, where maintenance must be conducted for both individual assets of interest and complex manufacturing processes. In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry.Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications.Topics include:What data must be gathered for effective predictive maintenance applicationsHow to formulate a predictive maintenance problem into three different machine-learning models (regression, binary classification, and multiclass classification)The step-by-step procedure for data input, data preprocessing, data labeling, and feature engineering from the raw data to prepare the training/testing dataHow various types of learning models can be trained and compared using different algorithms
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction