* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Building a Stock Price Predictor using LSTM in Keras  (Lida 75 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126106
  • Karma: +0/-0
Building a Stock Price Predictor using LSTM in Keras
« em: 19 de Abril de 2025, 15:35 »
Building a Stock Price Predictor using LSTM in Keras


Published 4/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 9m | Size: 241 MB

LSTM Stock Price Prediction - Time Series Forecasting, Deep Learning, Data Preprocessing, and Google Colab Deployment


What you'll learn
Understand the fundamentals of time series forecasting with LSTM (Long Short-Term Memory) models
Collect and visualize stock price data using Yahoo Finance and Matplotlib
Preprocess financial data and apply feature scaling techniques
Create sequence datasets suitable for LSTM networks
Build and train an LSTM-based neural network using TensorFlow/Keras
Apply model checkpointing and early stopping for optimal performance
Make future predictions and rolling forecasts of stock prices
Visualize model performance and export predictions to CSV
Save trained models and scalers to Google Drive for future use
Evaluate model performance using RMSE and MAE metrics
Requirements
Basic understanding of Python programming
A Google account to run and save files
Description
In this hands-on course, you'll learn how to build a complete Stock Price Prediction System using LSTM (Long Short-Term Memory) networks in Python - one of the most powerful deep learning architectures for time series data. Designed for learners with basic programming knowledge, this course walks you through real-world financial forecasting using historical stock market data.You will begin with data collection from Yahoo Finance using yfinance, and learn how to preprocess and visualize stock price data with pandas, NumPy, and matplotlib. You'll then dive deep into sequence modeling using LSTM from TensorFlow/Keras - a powerful neural network for capturing patterns in sequential data like stock prices. We will cover model architecture design, training strategies using early stopping and checkpointing, and advanced features such as rolling window forecasting and future prediction.Additionally, you'll learn how to deploy your project on Google Colab with GPU acceleration, and save models, scalers, metrics, and results directly to your Google Drive for seamless storage and access.By the end of this course, you'll be equipped to develop your own time series forecasting tools - a valuable skill in finance, AI applications, and predictive analytics. Whether you're a student, developer, or aspiring data scientist, this project-based approach ensures you can apply your knowledge in the real world.
Who this course is for
Data science and AI enthusiasts interested in time-series forecasting
Beginners and intermediate learners looking for a practical deep learning project
Finance professionals who want to understand stock prediction using neural networks
Students building academic or industry-ready projects
Anyone curious to learn how to forecast stock prices using real-world data and LSTM
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/building-a-stock-price-predictor-using-lstm-in-keras/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/ed99bd688db2d6e162fd7a66955f5d76/nzlkt.Building.a.Stock.Price.Predictor.using.LSTM.in.Keras.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/96E95F98B0B3A05/nzlkt.Building.a.Stock.Price.Predictor.using.LSTM.in.Keras.rar